Muutke küpsiste eelistusi

E-raamat: Stein Estimation

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a self-contained introduction of Stein/shrinkage estimation for the mean vector of a multivariate normal distribution. The book begins with a brief discussion of basic notions and results from decision theory such as admissibility, minimaxity, and (generalized) Bayes estimation. It also presents Stein's unbiased risk estimator and the James-Stein estimator in the first chapter. In the following chapters, the authors consider estimation of the mean vector of a multivariate normal distribution in the known and unknown scale case when the covariance matrix is a multiple of the identity matrix and the loss is scaled squared error. The focus is on admissibility, inadmissibility, and minimaxity of (generalized) Bayes estimators, where particular attention is paid to the class of (generalized) Bayes estimators with respect to an extended Strawderman-type prior. For almost all results of this book, the authors present a self-contained proof. The book is helpful for researchers and graduate students in various fields requiring data analysis skills as well as in mathematical statistics.


1. Decision Theory Preliminaries.-
2. Minimaxity and Improvement on the James-Stein estimator.-
3. Admissibility.

Yuzo Maruyama is Professor of Statistics at Kobe University. He earned his M.S. and Ph.D. degrees, both in Economics, at the University of Tokyo. His research interests include statistical decision theory, shrinkage estimation, and Bayesian model selection.







Tatsuya Kubokawa is Professor in the Faculty of Economics at the University of Tokyo. He earned his M.S. and Ph.D. degrees, both in Mathematics, at University of Tsukuba. His research interests include statistical decision theory, multivariate analysis, and mixed-effects modeling.







William E. Strawderman is Professor of Statistics at Rutgers University. He earned an M.S. in Mathematics from Cornell University and a second M.S. in Statistics from Rutgers and then completed his Ph.D. in Statistics, also at Rutgers. He is Fellow of both the Institute of Mathematical Statistics and American Statistical Society and Elected Member at International Statistical Institute. His research interests include statistical decision theory, shrinkage estimation, and Bayesian statistics.