Muutke küpsiste eelistusi

E-raamat: Stem Cells in Birth Defects Research and Developmental Toxicology

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 19-Apr-2018
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119283232
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 190,13 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 19-Apr-2018
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119283232
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book contains material contributed by forward-looking scientists who work at the interface of stem cell research and applied science with the aim to improve human fetal safety and the understanding of human developmental and degenerative disorders.
  • Provides important platforms and contemporary accounts of the state of stem cell research in the fields of toxicology and teratology
  • Considers both in vitro uses of stem cells as platforms for teratology and also stem cellopathies, which are in vivo developmental and degenerative disorders
  • Helps the pharmaceutical industry and safety and environmental authorities validate the status quo of in vitro toxicity test systems based on human pluripotent stem cells and their derivatives
List of Contributors xiii
Preface xix
Part I Introduction and Overview 1(24)
1 The Basics of Stem Cells and Their Utility as Platforms to Model Teratogen Action and Human Developmental and Degenerative Disorders
3(22)
Bindu Prabhakar
Soowan Lee
Theodore P. Rasmussen
1.1 Stem Cell Types and Basic Function
3(3)
1.2 Pluripotency
6(3)
1.2.1 Poised Chromatin of the Pluripotent Epigenome
6(1)
1.2.2 Undirected Differentiation of Pluripotent Cells to Embryoid Bodies
7(1)
1.2.3 Directed Differentiation of Pluripotent Cells
8(1)
1.3 In vitro Uses of Pluripotent Cells
9(4)
1.3.1 Pluripotent Cells for Toxicology
9(2)
1.3.2 Pluripotent Cells for Teratology
11(1)
1.3.3 Limitations of Pluripotent Stem Cells
12(1)
1.4 Adult Stem Cells In vivo
13(1)
1.5 Emerging Trends in Stem Cell Culture
14(4)
1.5.1 Use of Coculture
15(1)
1.5.2 Organoids
16(1)
1.5.3 Microfluidics
17(1)
1.5.4 Other Cell Types with Stem-Cell-Like Properties
18(1)
1.6 Future Directions
18(2)
1.6.1 iPSCs, Pharmacogenomics, and Predictive Teratology
18(1)
1.6.2 Stem Cell Systems for Environmental Toxicology
19(1)
References
20(5)
Part II Using Pluripotent Cells for the Detection and Analysis of Teratogens 25(94)
2 Stem Cells and Tissue Engineering Technologies for Advancing Human Teratogen Screening
27(32)
Jiangwa Xing
Geetika Sahni
Yi-Chin Toh
Abbreviations
27(1)
2.1 Introduction
28(1)
2.2 Current DART Regulatory Guidelines and Methods
29(4)
2.2.1 Governing Bodies
29(1)
2.2.2 Terminologies and Definitions
29(1)
2.2.3 Testing Methodologies
30(2)
2.2.4 Limitations of Animal-Based DART Testing
32(1)
2.3 In vitro Animal-Based Models for Developmental Toxicity Testing
33(9)
2.3.1 Current In vitro Animal-Based Models for Developmental Toxicity Testing
33(2)
2.3.2 The MM Assay
35(1)
2.3.3 The WEC Assay
35(1)
2.3.4 The ZEDT Assay
36(2)
2.3.5 New Engineering and Microfabrication Technologies for Model Improvement
38(4)
2.4 In vitro Stem-Cell-Based Developmental Toxicity Models
42(8)
2.4.1 Embryonic Stem Cell Test (EST)
42(3)
2.4.2 ReproGlo Reporter Assay
45(1)
2.4.3 Metabolite Biomarker Assay Using hESCs
46(1)
2.4.4 Mesoendoderm Biomarker-Based Human Pluripotent Stem Cell Test (hPST)
47(1)
2.4.5 The Micropatterned Human Pluripotent Stem Cell Test (g-hPST)
48(2)
2.5 Conclusion and Future Directions
50(1)
References
51(8)
3 Use of Embryoid Bodies for the Detection of Teratogens and Analysis of Teratogenic Mechanisms
59(12)
Anthony Flamier
3.1 Embryoid Body Assays: Background
59(4)
3.1.1 Teratogens and Teratogenesis
59(1)
3.1.2 Classic Protocols for Teratogen Assays
60(2)
3.1.3 Pluripotent Stem Cell Technology and its Applications for Teratogen Detection
62(1)
3.2 Detection of Teratogens Using EBs
63(2)
3.2.1 Formation of Embryoid Bodies for Teratogen Assays
63(2)
3.2.2 Cytotoxicity versus Teratogenicity
65(1)
3.2.3 EB Treatments
65(1)
3.3 Teratogenic Mechanisms
65(2)
3.3.1 EB Growth and Morphogenesis
65(1)
3.3.2 Molecular Analysis
66(1)
3.3.3 Alternative Analyses
67(1)
Acknowledgments
67(1)
References
67(4)
4 Stem-Cell-Based In vitro Morphogenesis Models to Investigate Developmental Toxicity of Chemical Exposures
71(20)
Yusuke Marikawa
4.1 Introduction
71(2)
4.2 Stem-Cell-Based In vitro Morphogenesis Model
73(10)
4.2.1 Mouse P19C5 EB as an In vitro Gastrulation Model
73(4)
4.2.2 Quantitative Evaluation of Morphogenetic Impact
77(1)
4.2.3 Detection of Developmentally Toxic Exposures Using Morphometric Analyses
78(3)
4.2.4 Investigations into the Molecular Mechanisms of Teratogen Actions Using P19C5 EBs
81(2)
4.3 Future Directions: Enhancing Morphogenesis-Based Assays
83(2)
4.3.1 Analyses of Changes in Gene Expression Relevant for Teratogenesis
83(1)
4.3.2 Detection of Proteratogens Using Metabolic Systems
84(1)
4.3.3 Representation of Additional Developmental Regulator Signals
84(1)
4.3.4 Recapitulation of Human Embryogenesis Using Human Embryonic Stem Cells
85(1)
4.4 Concluding Remarks
85(1)
Acknowledgment
86(1)
References
86(5)
5 Risk Assessment Using Human Pluripotent Stem Cells: Recent Advances in Developmental Toxicity Screens
91(28)
Kristen Buck
Nicole I. zur Nieden
5.1 Introduction
91(1)
5.2 Animal Embryo Studies to Evaluate Developmental Toxicity
91(3)
5.3 Usage of Mouse Embryonic Stem Cells in Developmental Toxicity
94(2)
5.4 Alternative Endpoint Read-Out Approaches in the EST
96(3)
5.4.1 Simple and Complex Methods - Trends Are Ever Changing
96(2)
5.4.2 Genomics, Transcriptomics, Proteomics, and Metabolomics
98(1)
5.5 Novel Methods and Protocols to Replicate Human Development
99(6)
5.5.1 Human Embryonic Stem Cells
100(3)
5.5.2 Multipotent Stem Cells and Beyond
103(2)
5.6 Future Applications
105(1)
Acknowledgments
105(1)
References
106(13)
Part III Human Developmental Pathologies Mediated by Adult Stem Cells 119(166)
6 Modeling the Brain in the Culture Dish: Advancements and Applications of Induced Pluripotent Stem-Cell-Derived Neurons
121(38)
Sandhya Chandrasekaran
Prashanth Rajarajan
Schahram Akbarian
Kristen Brennand
6.1 Introduction
121(1)
6.2 Methods to Generate Patient-Derived Neurons
122(5)
6.2.1 Directed Differentiation of Neurons from Pluripotent Stem Cells
122(1)
6.2.2 Dopaminergic Neurons
123(1)
6.2.3 Glutamatergic Neurons
123(1)
6.2.4 GABAergic Interneurons
124(1)
6.2.5 Striatal Neurons
125(1)
6.2.6 Other Neurons (Serotonergic and Motor)
126(1)
6.2.7 Limitations of Directed Differentiation
127(1)
6.3 Neuronal Induction from Fibroblasts and hiPSCs
127(5)
6.3.1 Induced Neurons (iNeurons)
128(1)
6.3.2 Dopaminergic iNeurons
129(1)
6.3.3 Glutamatergic iNeurons
130(1)
6.3.4 Induced GABAergic Interneurons
130(1)
6.3.5 Induced Medium Spiny Neurons
131(1)
6.3.6 Serotonergic iNeurons
131(1)
6.3.7 Induced Motor Neurons
131(1)
6.3.8 Limitations of Neuronal Induction
132(1)
6.4 Cerebral Organoids: Neural Modeling in Three Dimensions
132(4)
6.4.1 Current Methods for Deriving Cerebral Organoids
132(2)
6.4.2 Applications of Cerebral Organoids: Disease Modeling
134(1)
6.4.3 Limitations in the Use of Cerebral Organoids
135(1)
6.5 Epigenetic Considerations in hiPSC Donor Cell Choice
136(1)
6.6 Aging Neurons
137(3)
6.6.1 Techniques to Age hiPSCs
137(1)
6.6.2 Aging and Dedifferentiation
138(1)
6.6.3 Future Directions
139(1)
6.7 Drug Testing Using hiPSCs
140(2)
6.7.1 Facilitating Clinical Trials
140(1)
6.7.2 Titrating Drug Dosage
140(1)
6.7.3 Evaluating Chemotherapies
141(1)
6.7.4 Steering Personalized Medicine
141(1)
6.7.5 Forging Neural Networks
142(1)
6.8 Promises in the Field
142(3)
6.8.1 High-Throughput Automation
142(1)
6.8.2 Neural Tissue Engineering Using hiPSCs
142(1)
6.8.3 hiPSC-Based Transplantation Therapies
143(1)
6.8.4 Advances Using Gene-Editing Technologies
144(1)
6.9 Concluding Remarks
145(1)
References
146(13)
7 Modeling Genetic and Environment Interactions Relevant to Huntington's and Parkinson's Disease in Human Induced Pluripotent Stem Cells (hiPSCs)-Derived Neurons
159(14)
Piyush Joshi
M. Diana Neely
Aaron B. Bowman
7.1 Gene-Environment Interactions Assessed in hiPSC-Derived Neurons
159(1)
7.2 Modeling of Neurological Diseases with hiPSCs
160(2)
7.3 Cell Viability Assays
162(1)
7.4 Mitochondria
163(1)
7.5 Oxidative Stress
164(1)
7.6 Neurite Length by Immunocytochemistry (ICC)
164(2)
7.7 Conclusions
166(1)
References
167(6)
8 Alcohol Effects on Adult Neural Stem Cells - A Novel Mechanism of Neurotoxicity and Recovery in Alcohol Use Disorders
173(50)
Rachael A. Olsufka
Hui Peng
Jessica S. Newton
Kimberly Nixon
8.1 Introduction
173(2)
8.2 The "Birth" of the Study of "Neuronal Cell Birth"
175(5)
8.3 Components of Adult Stem-Cell-Driven Neurogenesis
180(9)
8.3.1 Permissive Sites of Adult Neurogenesis in Brain
180(2)
8.3.2 Stem Cells Versus Progenitors
182(2)
8.3.3 Proliferation
184(3)
8.3.4 Differentiation and Migration
187(1)
8.3.5 Cell Survival and Integration
188(1)
8.4 Alcohol Effects on Adult Neural Stem Cells and Neurogenesis
189(7)
8.4.1 Proliferation
189(4)
8.4.2 Differentiation and Migration
193(1)
8.4.3 Survival and Integration
194(2)
8.5 Extrinsic Factors Influence the Neurogenic Niche
196(2)
8.6 Alcohol and the Niche
198(2)
8.7 Conclusions
200(1)
References
201(22)
9 Fetal Alcohol Spectrum Disorders: A Stem-Cellopathy?
223(38)
Amanda H. Mahnke
Nihal A. Salem
Alexander M. Tseng
Annette S. Fincher
Andrew Klopfer
Rajesh C. Miranda
9.1 Fetal Alcohol Spectrum Disorders
223(2)
9.2 Stem Cells
225(9)
9.2.1 Totipotent Stem Cells
227(3)
9.2.2 Placental Stem Cells - Trophoblast
230(1)
9.2.3 Embryonic Stem Cells and Induced Pluripotent Stem Cells
231(3)
9.3 Endoderm
234(1)
9.3.1 Liver
234(1)
9.4 Mesoderm
235(3)
9.4.1 Cardiac Development
235(2)
9.4.2 Kidney
237(1)
9.5 Ectoderm
238(5)
9.5.1 Neuroectoderm Development
238(1)
9.5.2 Neural Crest
239(1)
9.5.3 Neural Tube Development
240(3)
9.6 Future Directions
243(2)
9.6.1 Fetal Origin of Adult Stem Cells
243(1)
9.6.2 Sex Differences
244(1)
9.6.3 Stem Cell Therapy
245(1)
9.7 Conclusion
245(1)
References
246(15)
10 Toxicological Responses in Keratinocyte Interfollicular Stem Cells
261(24)
Rambon Shamilov
Brian J. Aneskievich
10.1 Epidermal Keratinocyte Stem Cells
261(6)
10.2 Arsenic
267(2)
10.3 Dioxin
269(4)
10.4 Bacterial Toxins
273(1)
10.5 Conclusions and Prospective Considerations
274(1)
References
275(10)
Part IV Recent Innovations in Stem Cell Bioassay and Platform Development 285(56)
11 Stem-Cell Microscale Platforms for Toxicology Screening
287(22)
Tiago G. Fernandes
Joaquim M.S. Cabral
11.1 Introduction
287(1)
11.2 Stem Cell Models for Toxicology Assessment
288(2)
11.3 Biomimetic Microscale Systems for Drug Screening
290(3)
11.3.1 Design and Microfabrication: Soft Lithography and Replica Molding
290(2)
11.3.2 Microcontact Printing and Surface Patterning
292(1)
11.3.3 Robotic Spotting and Printing
292(1)
11.4 Microtechnologies for Drug Discovery
293(1)
11.5 Devices for High-Throughput Toxicology Studies
294(1)
11.6 Cellular Microarray Platforms
295(3)
11.7 Microfluidic Platforms
298(3)
11.8 Conclusions and Future Perspectives
301(1)
Acknowledgments
301(1)
References
302(7)
12 HepaRG Cells as a Model for Hepatotoxicity Studies
309(32)
Andre Guillouzo
Christiane Guguen-Guillouzo
12.1 Introduction
309(1)
12.2 Characteristics of HepaRG Cells
310(6)
12.2.1 A Bipotent Human Liver Cell Line
310(4)
12.2.2 HepaRG Hepatocytes Express Liver-Specific Functions
314(1)
12.2.3 Long-Term Functional Stability of HepaRG Hepatocytes
315(1)
12.3 Biotransformation and Detoxification Activities
316(4)
12.3.1 Drug Metabolism Capacity
316(2)
12.3.2 Biokinetics and Intrinsic Clearances
318(1)
12.3.3 Applications
319(1)
12.4 Toxicity Studies
320(8)
12.4.1 Hepatotoxicity Screening
320(2)
12.4.2 Cellular Cytotoxicity
322(2)
12.4.3 Genotoxicity and Carcinogenicity Screening
324(1)
12.4.4 Identification of Target Genes
325(1)
12.4.5 Cholestasis
326(1)
12.4.6 Steatosis
327(1)
12.4.7 Phospholipidosis
328(1)
12.5 Conclusions and Perspectives
328(1)
Acknowledgments
329(1)
References
330(11)
Index 341
Theodore P. Rasmussen, PhD is an Associate Professor in the Department of Pharmaceutical Sciences at the University of Connecticut, a charter member of the school's Stem Cell Institute, and a founding member of the university's Institute for Systems Genomics.