About the Author |
|
xi | |
Foreword |
|
xiii | |
Preface |
|
xvii | |
Notation |
|
xix | |
|
1 Stirling myth -- and Stirling reality |
|
|
1 | (8) |
|
|
1 | (1) |
|
|
2 | (5) |
|
1.2.1 That the quarry engine of 1818 developed 2 hp |
|
|
2 | (2) |
|
1.2.2 That the limiting efficiency of the Stirling engine is that of the Carnot cycle |
|
|
4 | (1) |
|
1.2.3 That the 1818 engine operated `... on a principle entirely new' |
|
|
5 | (1) |
|
1.2.4 That the invention was catalyzed by Stirling's concern over steam boiler explosions |
|
|
5 | (1) |
|
1.2.5 That younger brother James was the true inventor |
|
|
6 | (1) |
|
1.2.6 That 90 degrees and unity respectively are acceptable `default' values for thermodynamic phase angle a and volume ratio κ |
|
|
6 | (1) |
|
7.2.7 That dead space (un-swept volume) is a necessary evil |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (2) |
|
2 Reflexions sur le cicle de Carnot |
|
|
9 | (10) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
11 | (3) |
|
|
14 | (2) |
|
2.5 `Realistic' Carnot cycle |
|
|
16 | (1) |
|
2.6 `Equivalent' polytropic index |
|
|
16 | (1) |
|
|
17 | (2) |
|
3 What Carnot efficiency? |
|
|
19 | (6) |
|
|
19 | (1) |
|
3.2 Putting Carnot to work |
|
|
19 | (1) |
|
3.3 Mean cycle temperature difference, εTx = T -- Tw |
|
|
20 | (1) |
|
3.4 Net internal loss by inference |
|
|
21 | (2) |
|
3.5 Why no p-V diagram for the `ideal' Stirling cycle? |
|
|
23 | (1) |
|
|
23 | (2) |
|
4 Equivalence conditions for volume variations |
|
|
25 | (8) |
|
4.1 Kinematic configuration |
|
|
25 | (2) |
|
4.2 `Additional' dead space |
|
|
27 | (5) |
|
|
32 | (1) |
|
5 The optimum versus optimization |
|
|
33 | (12) |
|
5.1 An engine from Turkey rocks the boat |
|
|
33 | (1) |
|
5.2 ... and an engine from Duxford |
|
|
34 | (2) |
|
|
36 | (5) |
|
5.3.1 Volumetric compression ratio rv |
|
|
37 | (1) |
|
5.3.2 Indicator diagram shape |
|
|
37 | (3) |
|
5.3.3 More from the re-worked Schmidt analysis |
|
|
40 | (1) |
|
5.4 Crank-slider mechanism again |
|
|
41 | (1) |
|
5.5 Implications for engine design in general |
|
|
42 | (3) |
|
6 Steady-flow heat transfer correlations |
|
|
45 | (10) |
|
6.1 Turbulent -- or turbulent? |
|
|
45 | (2) |
|
|
47 | (1) |
|
6.3 Contribution from `inverse modelling' |
|
|
48 | (2) |
|
6.4 Contribution from Scaling |
|
|
50 | (2) |
|
6.5 What turbulence level? |
|
|
52 | (3) |
|
7 A question of adiabaticity |
|
|
55 | (10) |
|
|
55 | (1) |
|
|
55 | (1) |
|
7.3 A contribution from Newton |
|
|
56 | (1) |
|
7.4 Variable-volume space |
|
|
57 | (2) |
|
|
59 | (1) |
|
7.6 Thermal diffusion -- axi-symmetric case |
|
|
60 | (1) |
|
7.7 Convection versus diffusion |
|
|
61 | (1) |
|
|
61 | (3) |
|
|
64 | (1) |
|
|
65 | (8) |
|
|
65 | (1) |
|
8.2 `Equivalent' steady-flow closed-cycle regenerative engine |
|
|
66 | (2) |
|
|
68 | (1) |
|
8.4 Simulated performance |
|
|
68 | (2) |
|
|
70 | (1) |
|
|
71 | (2) |
|
|
73 | (10) |
|
|
73 | (2) |
|
|
75 | (4) |
|
|
79 | (1) |
|
9.4 Transient response of regenerator matrix |
|
|
80 | (2) |
|
|
82 | (1) |
|
9.6 Application to reality |
|
|
82 | (1) |
|
|
83 | (14) |
|
10.1 Scaling and similarity |
|
|
83 | (1) |
|
|
83 | (5) |
|
10.2.1 Independent variables |
|
|
84 | (1) |
|
10.2.2 Dependent variables |
|
|
85 | (2) |
|
10.2.3 Local, instantaneous Reynolds number Re |
|
|
87 | (1) |
|
|
88 | (2) |
|
10.4 ... without the computer |
|
|
90 | (7) |
|
|
97 | (12) |
|
|
97 | (1) |
|
|
98 | (4) |
|
11.3 The `equivalent' slot |
|
|
102 | (2) |
|
|
104 | (3) |
|
11.5 Available work lost -- conventional arithmetic |
|
|
107 | (2) |
|
12 FastTrack gas path design |
|
|
109 | (20) |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
110 | (8) |
|
|
118 | (1) |
|
12.5 Rationale behind FastTrack |
|
|
118 | (3) |
|
12.6 Alternative start point -- GPU-3 charged with He |
|
|
121 | (8) |
|
|
129 | (12) |
|
|
129 | (1) |
|
13.2 Flow path dimensions |
|
|
130 | (3) |
|
13.3 Operating conditions |
|
|
133 | (4) |
|
|
137 | (1) |
|
13.5 Rationale behind FlexiScale |
|
|
137 | (4) |
|
|
141 | (8) |
|
|
141 | (1) |
|
14.2 Worked example step-by-step |
|
|
141 | (4) |
|
14.2.1 Tubular exchangers |
|
|
142 | (1) |
|
|
143 | (2) |
|
|
145 | (1) |
|
14.4 Rationale behind ReScale |
|
|
145 | (4) |
|
14.4.1 Tubular exchangers |
|
|
145 | (1) |
|
|
146 | (3) |
|
15 Less steam, more traction -- Stirling engine design without the hot air |
|
|
149 | (14) |
|
15.1 Optimum heat exchanger |
|
|
149 | (1) |
|
15.2 Algebraic development |
|
|
150 | (3) |
|
|
153 | (6) |
|
|
159 | (4) |
|
16 Heat transfer correlations -- from the horse's mouth |
|
|
163 | (8) |
|
|
163 | (3) |
|
16.2 Application to design |
|
|
166 | (1) |
|
16.3 Rationale behind correlation parameters REω and XQXE |
|
|
167 | (4) |
|
16.3.1 Corroboration from dimensional analysis |
|
|
169 | (2) |
|
17 Wire-mesh regenerator -- `back of envelope' sums |
|
|
171 | (28) |
|
|
171 | (1) |
|
|
171 | (2) |
|
17.2.1 Thermal capacity ratio |
|
|
111 | (62) |
|
17.3 Aspects of flow design |
|
|
173 | (8) |
|
17.4 A thumb-nail sketch of transient response |
|
|
181 | (3) |
|
|
181 | (2) |
|
17.4.2 Specimen temperature solutions |
|
|
183 | (1) |
|
|
184 | (6) |
|
17.5.1 Thermal penetration depth |
|
|
187 | (2) |
|
17.5.2 Specifying the wire mesh |
|
|
189 | (1) |
|
17.6 More on intrinsic similarity |
|
|
190 | (9) |
|
|
199 | (16) |
|
|
199 | (1) |
|
18.2 Analytical opportunities waiting to be explored |
|
|
200 | (1) |
|
18.3 Heat exchange -- arbitrary wall temperature gradient |
|
|
201 | (4) |
|
18.4 Defining equations and discretization |
|
|
205 | (1) |
|
|
205 | (1) |
|
18.4.2 Energy equation -- variable-volume spaces |
|
|
205 | (1) |
|
18.5 Specimen implementation |
|
|
206 | (2) |
|
|
206 | (1) |
|
|
207 | (1) |
|
18.5.3 Reynolds number in the annular gap |
|
|
207 | (1) |
|
|
208 | (3) |
|
18.7 Specimen temperature solutions |
|
|
211 | (4) |
|
19 H2 versus He versus air |
|
|
215 | (4) |
|
|
215 | (1) |
|
|
216 | (1) |
|
|
217 | (2) |
|
|
219 | (16) |
|
20.1 In praise of arithmetic |
|
|
219 | (3) |
|
20.2 Reynolds number Re in the annular gap |
|
|
222 | (1) |
|
20.3 Contact surface temperature in annular gap |
|
|
223 | (2) |
|
20.4 Design parameter Ld/g |
|
|
225 | (1) |
|
20.5 Building a specification |
|
|
226 | (2) |
|
|
228 | (1) |
|
|
229 | (5) |
|
|
234 | (1) |
|
21 Ultimate Lagrange formulation? |
|
|
235 | (12) |
|
21.1 Why a new formulation? |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
236 | (2) |
|
|
238 | (2) |
|
21.5 Outline computational strategy |
|
|
240 | (1) |
|
|
240 | (4) |
|
21.7 Boundary and initial conditions |
|
|
244 | (1) |
|
21.8 Further computational economies |
|
|
244 | (1) |
|
21.9 `Ultimate Lagrange'? |
|
|
245 | (2) |
Appendix 1 The reciprocating Carnot cycle |
|
247 | (2) |
Appendix 2 Determination of V2 and V4 -- polytropic processes |
|
249 | (2) |
Appendix 3 Design charts |
|
251 | (6) |
Appendix 4 Kinematics of lever-crank drive |
|
257 | (4) |
References |
|
261 | (6) |
Name Index |
|
267 | (2) |
Subject Index |
|
269 | |