Muutke küpsiste eelistusi

E-raamat: Stirling Cycle Engines: Inner Workings and Design

  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-Nov-2013
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118818404
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 117,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-Nov-2013
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118818404
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Some 200 years after the original invention, internal design of a Stirling engine has come to be considered a specialist task, calling for extensive experience and for access to sophisticated computer modelling. The low parts-count of the type is negated by the complexity of the gas processes by which heat is converted to work. Design is perceived as problematic largely because those interactions are neither intuitively evident, nor capable of being made visible by laboratory experiment. There can be little doubt that the situation stands in the way of wider application of this elegant concept.

Stirling Cycle Engines re-visits the design challenge, doing so in three stages. Firstly, unrealistic expectations are dispelled: chasing the Carnot efficiency is a guarantee of disappointment, since the Stirling engine has no such pretentions. Secondly, no matter how complex the gas processes, they embody a degree of intrinsic similarity from engine to engine. Suitably exploited, this means that a single computation serves for an infinite number of design conditions. Thirdly, guidelines resulting from the new approach are condensed to high-resolution design charts nomograms. 

Appropriately designed, the Stirling engine promises high thermal efficiency, quiet operation and the ability to operate from a wide range of heat sources. Stirling Cycle Engines offers tools for expediting feasibility studies and for easing the task of designing for a novel application. 

Key features:





Expectations are re-set to realistic goals. The formulation throughout highlights what the thermodynamic processes of different engines have in common rather than what distinguishes them. Design by scaling is extended, corroborated, reduced to the use of charts and fully Illustrated. Results of extensive computer modelling are condensed down to high-resolution Nomograms. Worked examples feature throughout.  

Prime movers (and coolers) operating on the Stirling cycle are of increasing interest to industry, the military (stealth submarines) and space agencies. Stirling Cycle Engines fills a gap in the technical literature and is a comprehensive manual for researchers and practitioners. In particular, it will support effort world-wide to exploit potential for such applications as small-scale CHP (combined heat and power), solar energy conversion and utilization of low-grade heat.
About the Author xi
Foreword xiii
Preface xvii
Notation xix
1 Stirling myth -- and Stirling reality
1(8)
1.1 Expectation
1(1)
1.2 Myth by myth
2(5)
1.2.1 That the quarry engine of 1818 developed 2 hp
2(2)
1.2.2 That the limiting efficiency of the Stirling engine is that of the Carnot cycle
4(1)
1.2.3 That the 1818 engine operated `... on a principle entirely new'
5(1)
1.2.4 That the invention was catalyzed by Stirling's concern over steam boiler explosions
5(1)
1.2.5 That younger brother James was the true inventor
6(1)
1.2.6 That 90 degrees and unity respectively are acceptable `default' values for thermodynamic phase angle a and volume ratio κ
6(1)
7.2.7 That dead space (un-swept volume) is a necessary evil
6(1)
1.3 ... and some heresy
7(1)
1.4 Why this crusade?
7(2)
2 Reflexions sur le cicle de Carnot
9(10)
2.1 Background
9(1)
2.2 Carnot re-visited
10(1)
2.3 Isothermal cylinder
11(3)
2.4 Specimen solutions
14(2)
2.5 `Realistic' Carnot cycle
16(1)
2.6 `Equivalent' polytropic index
16(1)
2.7 Reflexions
17(2)
3 What Carnot efficiency?
19(6)
3.1 Epitaph to orthodoxy
19(1)
3.2 Putting Carnot to work
19(1)
3.3 Mean cycle temperature difference, εTx = T -- Tw
20(1)
3.4 Net internal loss by inference
21(2)
3.5 Why no p-V diagram for the `ideal' Stirling cycle?
23(1)
3.6 The way forward
23(2)
4 Equivalence conditions for volume variations
25(8)
4.1 Kinematic configuration
25(2)
4.2 `Additional' dead space
27(5)
4.3 Net swept volume
32(1)
5 The optimum versus optimization
33(12)
5.1 An engine from Turkey rocks the boat
33(1)
5.2 ... and an engine from Duxford
34(2)
5.3 Schmidt on Schmidt
36(5)
5.3.1 Volumetric compression ratio rv
37(1)
5.3.2 Indicator diagram shape
37(3)
5.3.3 More from the re-worked Schmidt analysis
40(1)
5.4 Crank-slider mechanism again
41(1)
5.5 Implications for engine design in general
42(3)
6 Steady-flow heat transfer correlations
45(10)
6.1 Turbulent -- or turbulent?
45(2)
6.2 Eddy dispersion time
47(1)
6.3 Contribution from `inverse modelling'
48(2)
6.4 Contribution from Scaling
50(2)
6.5 What turbulence level?
52(3)
7 A question of adiabaticity
55(10)
7.1 Data
55(1)
7.2 The Archibald test
55(1)
7.3 A contribution from Newton
56(1)
7.4 Variable-volume space
57(2)
7.5 Desaxe
59(1)
7.6 Thermal diffusion -- axi-symmetric case
60(1)
7.7 Convection versus diffusion
61(1)
7.8 Bridging the gap
61(3)
7.9 Interim deductions
64(1)
8 More adiabaticity
65(8)
8.1 `Harmful' dead space
65(1)
8.2 `Equivalent' steady-flow closed-cycle regenerative engine
66(2)
8.3 `Equivalence'
68(1)
8.4 Simulated performance
68(2)
8.5 Conclusions
70(1)
8.6 Solution algorithm
71(2)
9 Dynamic Similarity
73(10)
9.1 Dynamic similarity
73(2)
9.2 Numerical example
75(4)
9.3 Corroboration
79(1)
9.4 Transient response of regenerator matrix
80(2)
9.5 Second-order effects
82(1)
9.6 Application to reality
82(1)
10 Intrinsic Similarity
83(14)
10.1 Scaling and similarity
83(1)
10.2 Scope
83(5)
10.2.1 Independent variables
84(1)
10.2.2 Dependent variables
85(2)
10.2.3 Local, instantaneous Reynolds number Re
87(1)
10.3 First steps
88(2)
10.4 ... without the computer
90(7)
11 Getting started
97(12)
11.1 Configuration
97(1)
11.2 Slots versus tubes
98(4)
11.3 The `equivalent' slot
102(2)
11.4 Thermal bottleneck
104(3)
11.5 Available work lost -- conventional arithmetic
107(2)
12 FastTrack gas path design
109(20)
12.1 Introduction
109(1)
12.2 Scope
110(1)
12.3 Numerical example
110(8)
12.4 Interim comment
118(1)
12.5 Rationale behind FastTrack
118(3)
12.6 Alternative start point -- GPU-3 charged with He
121(8)
13 FlexiScale
129(12)
13.1 FlexiScale?
129(1)
13.2 Flow path dimensions
130(3)
13.3 Operating conditions
133(4)
13.4 Regenerator matrix
137(1)
13.5 Rationale behind FlexiScale
137(4)
14 ReScale
141(8)
14.1 Introduction
141(1)
14.2 Worked example step-by-step
141(4)
14.2.1 Tubular exchangers
142(1)
14.2.2 Regenerator
143(2)
14.3 Regenerator matrix
145(1)
14.4 Rationale behind ReScale
145(4)
14.4.1 Tubular exchangers
145(1)
14.4.2 Regenerator
146(3)
15 Less steam, more traction -- Stirling engine design without the hot air
149(14)
15.1 Optimum heat exchanger
149(1)
15.2 Algebraic development
150(3)
15.3 Design sequence
153(6)
15.4 Note of caution
159(4)
16 Heat transfer correlations -- from the horse's mouth
163(8)
16.1 The time has come
163(3)
16.2 Application to design
166(1)
16.3 Rationale behind correlation parameters REω and XQXE
167(4)
16.3.1 Corroboration from dimensional analysis
169(2)
17 Wire-mesh regenerator -- `back of envelope' sums
171(28)
17.1 Status quo
171(1)
17.2 Temperature swing
171(2)
17.2.1 Thermal capacity ratio
111(62)
17.3 Aspects of flow design
173(8)
17.4 A thumb-nail sketch of transient response
181(3)
17.4.1 Rationalizations
181(2)
17.4.2 Specimen temperature solutions
183(1)
17.5 Wire diameter
184(6)
17.5.1 Thermal penetration depth
187(2)
17.5.2 Specifying the wire mesh
189(1)
17.6 More on intrinsic similarity
190(9)
18 Son of Schmidt
199(16)
18.1 Situations vacant
199(1)
18.2 Analytical opportunities waiting to be explored
200(1)
18.3 Heat exchange -- arbitrary wall temperature gradient
201(4)
18.4 Defining equations and discretization
205(1)
18.4.1 Ideal gas law
205(1)
18.4.2 Energy equation -- variable-volume spaces
205(1)
18.5 Specimen implementation
206(2)
18.5.1 Authentication
206(1)
18.5.2 Function form
207(1)
18.5.3 Reynolds number in the annular gap
207(1)
18.6 Integration
208(3)
18.7 Specimen temperature solutions
211(4)
19 H2 versus He versus air
215(4)
19.1 Conventional wisdom
215(1)
19.2 Further enquiry
216(1)
19.3 So, why air?
217(2)
20 The `hot air' engine
219(16)
20.1 In praise of arithmetic
219(3)
20.2 Reynolds number Re in the annular gap
222(1)
20.3 Contact surface temperature in annular gap
223(2)
20.4 Design parameter Ld/g
225(1)
20.5 Building a specification
226(2)
20.6 Design step by step
228(1)
20.7 Gas path dimensions
229(5)
20.8 Caveat
234(1)
21 Ultimate Lagrange formulation?
235(12)
21.1 Why a new formulation?
235(1)
21.2 Context
235(1)
21.3 Choice of display
236(2)
21.4 Assumptions
238(2)
21.5 Outline computational strategy
240(1)
21.6 Collision mechanics
240(4)
21.7 Boundary and initial conditions
244(1)
21.8 Further computational economies
244(1)
21.9 `Ultimate Lagrange'?
245(2)
Appendix 1 The reciprocating Carnot cycle 247(2)
Appendix 2 Determination of V2 and V4 -- polytropic processes 249(2)
Appendix 3 Design charts 251(6)
Appendix 4 Kinematics of lever-crank drive 257(4)
References 261(6)
Name Index 267(2)
Subject Index 269
Allan J. Organ, formerly of University of Cambridge, UK - now retired. Before his retirement Allan J. Organ was a lecturer at the University of Cambridge, specializing in thermodynamics and gas dynamics of the Stirling cycle machine and regenerator.He has studied stirling cycle machines throughout his career and is a leading authority in the field. As well as his teaching work, he has acted as a consultant in this area for numerous companies including Hymatic Ltd, Premier Precision Ltd, Lucas Aerospace Ltd, British Aerospace PLC, as well as for the Ministry of Defense.