Muutke küpsiste eelistusi

E-raamat: Stochastic Analysis for Gaussian Random Processes and Fields: With Applications

(Michigan State University, East Lansing, USA), (Kettering University, Flint, Michigan, USA)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Stochastic Analysis for Gaussian Random Processes and Fields: With Applications presents Hilbert space methods to study deep analytic properties connecting probabilistic notions. In particular, it studies Gaussian random fields using reproducing kernel Hilbert spaces (RKHSs).

The book begins with preliminary results on covariance and associated RKHS before introducing the Gaussian process and Gaussian random fields. The authors use chaos expansion to define the Skorokhod integral, which generalizes the Itô integral. They show how the Skorokhod integral is a dual operator of Skorokhod differentiation and the divergence operator of Malliavin. The authors also present Gaussian processes indexed by real numbers and obtain a KallianpurStriebel Bayes' formula for the filtering problem. After discussing the problem of equivalence and singularity of Gaussian random fields (including a generalization of the Girsanov theorem), the book concludes with the Markov property of Gaussian random fields indexed by measures and generalized Gaussian random fields indexed by Schwartz space. The Markov property for generalized random fields is connected to the Markov process generated by a Dirichlet form.
Preface xiii
Acknowledgments xvii
Acronyms xix
1 Covariances and Associated Reproducing Kernel Hilbert Space's
1(14)
1.1 Covariances and Negative Definite Functions
1(7)
1.2 Reproducing Kernel Hilbert Space
8(7)
2 Gaussian Random Fields
15(14)
2.1 Gaussian Random Variable
15(3)
2.2 Gaussian Spaces
18(4)
2.3 Stochastic Integral Representation
22(3)
2.4 Chaos Expansion
25(4)
3 Stochastic Integration for Gaussian Random Fields
29(28)
3.1 Multiple Stochastic Integrals
29(4)
3.2 Skorokhod Integral
33(4)
3.3 Skorokhod Differentiation
37(7)
3.4 Ogawa Integral
44(8)
3.5 Appendix
52(5)
4 Skorokhod and Malliavin Derivatives for Gaussian Random Fields
57(10)
4.1 Malliavin Derivative
57(1)
4.2 Duality of the Skorokhod Integral and Derivative
58(1)
4.3 Duration in Stochastic Setting
59(4)
4.4 Special Structure of Covariance and Ito Formula
63(4)
5 Filtering with General Gaussian Noise
67(18)
5.1 Bayes Formula
67(11)
5.2 Zakai Equation
78(4)
5.3 Kalman Filtering for Fractional Brownian Motion Noise
82(3)
6 Equivalence and Singularity
85(44)
6.1 General Problem
85(5)
6.2 Equivalence and Singularity of Measures Generated by Gaussian Processes
90(5)
6.3 Conditions for Equivalence: Special Cases
95(6)
6.3.1 Introduction
95(1)
6.3.2 Gaussian Processes with Independent Increments
96(1)
6.3.3 Stationary Gaussian Processes
97(2)
6.3.4 Gaussian Measures on Banach Spaces
99(1)
6.3.5 Generalized Gaussian Processes Equivalent to Gaussian White Noise of Order p
100(1)
6.4 Prediction or Kriging
101(6)
6.5 Absolute Continuity of Gaussian Measures under Translations
107(22)
7 Markov Property of Gaussian Fields
129(30)
7.1 Linear Functionals on the Space of Radon Signed Measures
129(8)
7.2 Analytic Conditions for Markov Property of a Measure-Indexed Gaussian Random Field
137(7)
7.3 Markov Property of Measure-Indexed Gaussian Random Fields Associated with Dirichlet Forms
144(10)
7.3.1 Gaussian Processes Related to Dirichlet Forms
145(9)
7.4 Appendix A: Dirichlet Forms, Capacity, and Quasi-Continuity
154(1)
7.5 Appendix B: Balayage Measure
155(2)
7.6 Appendix C: Example
157(2)
8 Markov Property of Gaussian Fields and Dirichlet Forms
159(10)
8.1 Markov Property for Ordinary Gaussian Random Fields
159(6)
8.2 Gaussian Markov Fields and Dirichlet Forms
165(4)
Bibliography 169(8)
Index 177
Vidyadhar Mandrekar is a professor in the Department of Statistics and Probability at Michigan State University. He earned a PhD in statistics from Michigan State University. His research interests include stochastic partial differential equations, stationary and Markov fields, stochastic stability, and signal analysis.

Leszek Gawarecki is head of the Department of Mathematics at Kettering University. He earned a PhD in statistics from Michigan State University. His research interests include stochastic analysis and stochastic ordinary and partial differential equations.