Muutke küpsiste eelistusi

E-raamat: Stochastic Equations in Infinite Dimensions

(Scuola Normale Superiore, Pisa), (Polish Academy of Sciences)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 166,72 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Now in its second edition, this book gives a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. In the first part the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. This revised edition includes two brand new chapters surveying recent developments in the area and an even more comprehensive bibliography, making this book an essential and up-to-date resource for all those working in stochastic differential equations.

Arvustused

Review of the first edition: 'The exposition is excellent and readable throughout, and should help bring the theory to a wider audience.' Daniel L. Ocone, Stochastics and Stochastic Reports Review of the first edition: ' a welcome contribution to the rather new area of infinite dimensional stochastic evolution equations, which is far from being complete, so it should provide both a useful background and motivation for further research.' Yuri Kifer, The Annals of Probability Review of the first edition: ' an excellent book which covers a large part of stochastic evolution equations with clear proofs and a very interesting analysis of their properties In my opinion this book will become an indispensable tool for everybody working on stochastic evolution equations and related areas.' P. Kotelenez, American Mathematical Society

Muu info

Updates in this second edition include two brand new chapters and an even more comprehensive bibliography.
Preface; Introduction; Part I. Foundations:
1. Random variables;
2.
Probability measures;
3. Stochastic processes;
4. Stochastic integral; Part
II. Existence and Uniqueness:
5. Linear equations with additive noise;
6.
Linear equations with multiplicative noise;
7. Existence and uniqueness for
nonlinear equations;
8. Martingale solutions;
9. Markov property and
Kolmogorov equation;
10. Absolute continuity and Girsanov theorem;
11. Large
time behavior of solutions;
12. Small noise asymptotic;
13. Survey of
specific equations;
14. Some recent developments; Appendix A. Linear
deterministic equations; Appendix B. Some results on control theory; Appendix
C. Nuclear and HilbertSchmidt operators; Appendix D. Dissipative mappings;
Bibliography; Index.
Giuseppe Da Prato is Emeritus Professor at the Scuola Normale Superiore di Pisa. His research activity concerns: stochastic analysis, evolution equations both deterministic and stochastic, elliptic and parabolic equations with infinitely many variables, deterministic and stochastic control. On these subjects he has produced more than 350 papers in reviewed journals and eight books. Jerzy Zabczyk is Professor in the Institute of Mathematics at the Polish Academy of Sciences. His research interests include stochastic processes, evolution equations, control theory and mathematical finance. He has published 87 papers in mathematical journals and seven books.