Muutke küpsiste eelistusi

E-raamat: Stochastic Methods for Boundary Value Problems: Numerics for High-dimensional PDEs and Applications

  • Formaat: 208 pages
  • Ilmumisaeg: 26-Sep-2016
  • Kirjastus: De Gruyter
  • Keel: eng
  • ISBN-13: 9783110479164
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 126,52 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 208 pages
  • Ilmumisaeg: 26-Sep-2016
  • Kirjastus: De Gruyter
  • Keel: eng
  • ISBN-13: 9783110479164
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry. It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain. A variety of examples from capacitance calculations to electron dynamics in semiconductors are discussed to illustrate the viability of the approach. The book is written for mathematicians who work in the field of partial differential and integral equations, physicists and engineers dealing with computational methods and applied probability, for students and postgraduates studying mathematical physics and numerical mathematics.

Contents: Introduction Random walk algorithms for solving integral equations Random walk-on-boundary algorithms for the Laplace equation Walk-on-boundary algorithms for the heat equation Spatial problems of elasticity Variants of the random walk on boundary for solving stationary potential problems Splitting and survival probabilities in random walk methods and applications A random WOS-based KMC method for electronhole recombinations Monte Carlo methods for computing macromolecules properties and solving related problems Bibliography
Karl K. Sabelfeld, Novosibirsk State University, Russia; Nikolai A. Simonov, Novosibirsk State University, Russia.