Muutke küpsiste eelistusi

E-raamat: Stochastic Networks and Queues

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Queues and stochastic networks are analyzed in this book with purely probabilistic methods. The purpose of these lectures is to show that general results from Markov processes, martingales or ergodic theory can be used directly to study the corresponding stochastic processes. Recent developments have shown that, instead of having ad-hoc methods, a better understanding of fundamental results on stochastic processes is crucial to study the complex behavior of stochastic networks. 

Queues and stochastic networks are analyzed in this book with purely probabilistic methods. The purpose of these lectures is to show that general results from Markov processes, martingales or ergodic theory can be used directly to study the corresponding stochastic processes. Recent developments have shown that, instead of having ad-hoc methods, a better understanding of fundamental results on stochastic processes is crucial to study the complex behavior of stochastic networks.In this book, various aspects of these stochastic models are investigated in depth in an elementary way: Existence of equilibrium, characterization of stationary regimes, transient behaviors (rare events, hitting times) and critical regimes, etc. A simple presentation of stationary point processes and Palm measures is given. Scaling methods and functional limit theorems are a major theme of this book. In particular, a complete chapter is devoted to fluid limits of Markov processes.
1. Point Processes: 1.1 General Definitions; 1.2 Poisson Processes; 1.3
Poisson Point Processes on the Real Line; 1.4 Renewal Point Processes.-
2.
The GI/GI/1 FIFO Queue and Random Walks: 2.1 General results on the GI/GI/1
FIFO Queue; 2.2 Wiener-Hopf Factorization; 2.3 Applications to the GI/GI/1
Queue; 2.4 The GI/M/1 and M/GI/1 Queues; 2.5 The H/G/1 Queue; 2.6 A
Probabilistic Proof.-
3. Limit Theorems for the GI/GI/1 Queue: 3.1
Introduction; 3.2 The Biased Random Walk; 3.3 The Tail Distribution of W; 3.4
The Maximum of a Busy Period; 3.5 The GI/GI/1 Queue near Saturation; 3.6 The
Random Walk Conditioned to Hit Level a.-
4. Stochastic Networks and
Reversibility: 4.1 Introduction; 4.2 Reversibility of Markov Processes; 4.3
Local Balance Equations; 4.4 Queueing Networks with Product Form.-
5. The
M/M/1 Queue: 5.1 Introduction; 5.2 Exponential Martingales; 5.3 Hitting
Times: Downward; 5.4 Convergence to Equilibrium; 5.5 Hitting Times: Upward;
5.6 Rare Events; 5.7 Fluid Limits; 5.8 Large Deviations; 5.9 Appendix.-
6.
The M/M/infinity Queue: 6.1 Introduction; 6.2 Positive Martingales; 6.3
Hitting Times: Downward; 6.4 Hitting Times: Upward; 6.5 Fluid Limits; 6.6 A
Functional Central Limit Theorem; 6.7 The M/M/N/N Queue; 6.8 Appendix.-
7.
Queues with Poisson Arrivals: 7.1 FIFO Queue; 7.2 Infinite Server Queue; 7.3
LIFO Queue with Preemptive Service; 7.4 Processor-Sharing Queue; 7.5 The
Insensitivity Property; 7.6 The Distribution Seen by Customers.-
8.
Recurrence and Transience of Markov Chains: 8.1 Recurrence of Markov Chains;
8.2 Ergodicity; 8.3 Transience; 8.4 Ergodicity of Markov Processes; 8.5 Some
Applications; 8.6 The Classical Version of Lyapunov's Theorem.-
9. Rescaled
Markov Processes and Fluid Limits: 9.1 Introduction; 9.2 Rescaled Markov
Processes; 9.3 The Fluid Limits of a Class of Markov Processes; 9.4 Fluid
Limits and Skorohod Problems; 9.5 Fluid Limits and Ergodicity Properties; 9.6
Fluid Limits and Local Equilibrium; 9.7 Bibliographical Notes.-
10.
ErgodicTheory: Basic Results: 10.1 Discrete Dynamical Systems; 10.2 Ergodic
Theorems; 10.3 Continuous Time Dynamical Systems; 10.4 Markovian
Endomorphisms.-
11. Stationary Point Processes: 11.1 Introduction; 11.2 The
Palm Space of the Arrival Process; 11.3 Construction of a Stationary Point
Process; 11.4 Relations Between the Palm Space and Its Extension; 11.5 Joint
Distribution of the Points Around t=0; 11.6 Some Properties of Stationary
Point Processes; 11.7 Appendix.-
12. The G/G/1 FIFO Queue: 12.1 The Waiting
Time; 12.2 Virtual Waiting Time; 12.3 The Number of Customers; 12.4 The
Associated Stationary Point Processes; 12.5 The Unstable G/G/1 Queue; 12.6 A
Queue with Two Servers, the G/G/2 Queue.- A. Martingales: A.1 Discrete Time
Parameter Martingales; A.2 Continuous Time Martingales; A.3 The Stochastic
Integral for a Poisson Process; A.4 Stochastic Differential Equations with
Jumps.- B. Markovian Jump Processes: B.1 Q-Matrices; B.2 Global Balance
Equations; B.3 The Associated Martingales.- C. Convergence in Distribution:
C.1 The Total Variation Norm on Probability Distributions; C.2 Convergence of
Stochastic Processes.- D. An Introduction to Skorohod Problems: D.1 Dimension
1; D.2 Multi-Dimensional Skorohod Problems