Muutke küpsiste eelistusi

E-raamat: Strong Rigidity of Locally Symmetric Spaces

  • Formaat: 204 pages
  • Sari: Annals of Mathematics Studies
  • Ilmumisaeg: 02-Mar-2016
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9781400881833
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 82,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 204 pages
  • Sari: Annals of Mathematics Studies
  • Ilmumisaeg: 02-Mar-2016
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9781400881833
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan.



The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan's symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit's geometries. In his proof the author introduces two new notions having independent interest: one is "pseudo-isometries"; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof.

*Frontmatter, pg. i*Contents, pg. v*
1. Introduction, pg. 1*
2.
Algebraic Preliminaries, pg. 10*
3. The Geometry of chi : Preliminaries, pg.
20*
4. A Metric Definition of the Maximal Boundary, pg. 31*
5. Polar Parts,
pg. 35*
6. A Basic Inequality, pg. 44*
7. Geometry of Neighboring Flats, pg.
52*
8. Density Properties of Discrete Subgroups, pg. 62*
8. Density
Properties of Discrete Subgroups, pg. 66*
10. Pseudo Isometries of Simply
Connected Spaces with Negative Curvature, pg. 71*
11. Polar Regular Elements
in Co-Compact GAMMA, pg. 76*
12. Pseudo-Isometric Invariance of Semi-Simple
and Unipotent Elements, pg. 80*
13. The Basic Approximation, pg. 96*
14. The
Map , pg. 103*
15. The Boundary Map 0, pg. 107*
16. Tits Geometries, pg.
120*
17. Rigidity for R-rank > 1, pg. 125*
18. The Restriction to Simple
Groups, pg. 128*
19. Spaces of R-rank 1, pg. 134*
20. The Boundary
Semi-Metric, pg. 142*
21. Quasi-Conformal Mappings Over K and Absolute
Continuity on Almost All R-Circles, pg. 156*
22. The Effect of Ergodicity,
pg. 169*
23. R-Rank 1 Rigidity Proof Concluded, pg. 180*
24. Concluding
Remarks, pg. 187*Bibliography, pg. 193*Backmatter, pg. 197