Muutke küpsiste eelistusi

E-raamat: Strong Uniformity And Large Dynamical Systems

(Rutgers Univ, Usa)
  • Formaat: 460 pages
  • Ilmumisaeg: 07-Jul-2017
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814740760
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 129,87 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 460 pages
  • Ilmumisaeg: 07-Jul-2017
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814740760
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Beck studies the same general global questions about many-particle systems that Maxwell, Boltzmann, and Gibbs grappled with during the second half of the 19th century, but using an approach completely different from the well-known probabilistic machinery of statistical mechanics. He operates at the crossroads where number theory/uniform distribution intersects dynamical systems/quantitative ergodic theory, he says; it is pure mathematics with rigorous proofs, though he borrows some motivation and intuitions from physics and uses some probability theory. Annotation ©2018 Ringgold, Inc., Portland, OR (protoview.com)

It is the first book about a new aspect of Uniform distribution, called Strong Uniformity. Besides developing the theory of Strong Uniformity, the book also includes novel applications in the underdeveloped field of Large Dynamical Systems.
Preface v
Chapter 1 From Uniform Distribution to the Time-Evolution of Large Off-Equilibrium Systems
1(118)
1 Traditional Uniform Distribution and Weyl's Criterion
1(10)
2 Strong Uniformity
11(11)
3 High-Dimensional Configuration Space of Large Systems and Unrealistic Time Scale
22(17)
4 Dimension-Free Strong Uniformity on a Realistic Time Scale
39(6)
5 Rapid Approach and Long-Term Stability of Square-Root Equilibrium
45(11)
6 Non-ergodic Time-flow: Closed Orbit Spherical Systems
56(13)
7 Closed Orbit Polar Systems
69(15)
8 Snapshot Randomness (I): Poisson
84(12)
9 Proofs of Theorems 4.2 and 4.3
96(23)
Chapter 2 General Models
119(86)
10 General Model: Unique Ergodicity via Typical Rotations
119(18)
11 Asymptotic Time-Lapse Randomness
137(12)
12 Short-Term Time-Lapse Randomness: Multiple Mixedupness (I)
149(21)
13 Extensions of Theorem 4.2 beyond the Gaussian Case
170(18)
14 Extensions of Theorem 4.2 to Nonlinear Curves on the Plane
188(17)
Chapter 3 More Applications of Theorem 4.2
205(54)
15 Snapshot Randomness (II): Central Limit Theorem
205(11)
16 Snapshot Randomness (III) Case of Closed Orbits
216(15)
17 Time-Lapse Randomness vs. Snapshot Randomness (I): A Fundamental Difference
231(9)
18 Time-Lapse Randomness vs. Snapshot Randomness (II): A Fundamental Difference
240(6)
19 CLT Time-Lapse Randomness: Upper Bound
246(13)
Chapter 4 More Results about Randomness and Stability in Equilibrium
259(66)
20 Simultaneous Square-Root Equilibrium Relative to Nice Sets (I)
259(12)
21 Simultaneous Square-Root Equilibrium Relative to Nice Sets (II)
271(12)
22 Simultaneous Square-Root Equilibrium Relative to Nice Sets (III)
283(12)
23 On the Square-Root Logarithmic Threshold in the Gaussian Case
295(11)
24 Beyond the Applications of Theorem 4.2
306(10)
25 The Case of Singular Underlying Measure
316(9)
Chapter 5 More Proofs
325(112)
26 Proof of Theorem 4.1
325(10)
27 Starting the Proofs of Theorems 13.1--13.4
335(13)
28 Completing the Proof of Lemma 27.2
348(11)
29 Finishing the Proofs of Theorems 13.1--13.4
359(8)
30 Starting the Proof of Theorem 14.1
367(14)
31 Finishing the Proof of Theorem 14.1
381(11)
32 Proof of Theorem 14.2
392(13)
33 Multiple Mixedupness (II): Proof of Lemma 12.2
405(15)
34 Multiple Mixedupness (III): Proof of Theorem 12.2
420(17)
References 437(2)
Index 439