Muutke küpsiste eelistusi

E-raamat: Structural Analysis 2: Statically Indeterminate Structures

  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Oct-2018
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119557968
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 171,60 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Oct-2018
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119557968
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book enables the student to master the methods of analysis of isostatic and hyperstatic structures. To show the performance of the methods of analysis of the hyperstatic structures, some beams, gantries and reticular structures are selected and subjected to a comparative study by the different methods of analysis of the hyperstatic structures. This procedure provides an insight into the methods of analysis of the structures.

Preface ix
Chapter 1 Introduction to Statically Indeterminate Structural Analysis
1(24)
1.1 Introduction
1(1)
1.2 External static indeterminacy
2(3)
1.3 Internal static indeterminacy
5(6)
1.3.1 Truss structures
5(2)
1.3.2 Beam and frame structures
7(2)
1.3.3 Crossbeams
9(2)
1.4 Kinematic static indeterminacy
11(4)
1.5 Statically indeterminate structural analysis methods
15(1)
1.6 Superposition principle
16(1)
1.7 Advantages and disadvantages of statically indeterminate structures
17(4)
1.7.1 Advantages of statically indeterminate structures
18(1)
1.7.2 Disadvantages of statically indeterminate structures
19(2)
1.8 Conclusion
21(1)
1.9 Problems
21(4)
Chapter 2 Method of Three Moments
25(42)
2.1 Simple beams
25(12)
2.2 Continuous beam
37(6)
2.3 Applying Clapeyron's theorem
43(8)
2.3.1 Beam with two spans
44(2)
2.3.2 Beam with support settlements
46(3)
2.3.3 Beam with cantilever
49(2)
2.4 Focus method
51(12)
2.4.1 Left focus method
52(2)
2.4.2 Right focus method
54(3)
2.4.3 Focus method with loaded bays
57(6)
2.5 Conclusion
63(1)
2.6 Problems
63(4)
Chapter 3 Method of Forces
67(70)
3.1 Beam with one degree of static indeterminacy
67(5)
3.2 Beam with many degrees of static indeterminacy
72(5)
3.3 Continuous beam with support settlements
77(3)
3.4 Analysis of a beam with two degrees of static indeterminacy
80(4)
3.5 Analysis of abeam subjected to a moment
84(3)
3.6 Analysis of frames
87(26)
3.6.1 Frame with two degrees of static indeterminacy
87(6)
3.6.2 Frame with cantilever
93(7)
3.6.3 Frame with many degrees of static indeterminacy
100(6)
3.6.4 Frame with oblique bars
106(7)
3.7 Analysis of truss
113(16)
3.7.1 Internally statically indeterminate truss
114(7)
3.7.2 Externally statically indeterminate truss
121(4)
3.7.3 Internally and externally statically indeterminate truss
125(4)
3.8 Conclusion
129(1)
3.9 Problems
130(7)
Chapter 4 Slope-Deflection Method
137(76)
4.1 Relationship between deflections and transmitted moments
137(4)
4.2 Fixed-end moments
141(1)
4.2.1 Bi-hinged beam
141(1)
4.2.2 Simply supported beam
142(1)
4.3 Rigidity factor and transmission coefficient
142(6)
4.4 Beam analysis
148(16)
4.4.1 Single span beam
148(2)
4.4.2 Continuous beam
150(3)
4.4.3 Continuous beam with cantilever
153(3)
4.4.4 Beam with support settlements
156(4)
4.4.5 Beam subjected to a moment
160(4)
4.5 Analysis of frames
164(44)
4.5.1 Frame without sidesway
164(18)
4.5.2 Frames with sidesway
182(26)
4.6 Conclusion
208(1)
4.7 Problems
208(5)
Chapter 5 Moment-Distribution Method
213(58)
5.1 Hypotheses of the moment-distribution method
213(1)
5.2 Presentation of the moment-distribution method
214(5)
5.2.1 Distribution of a moment around a rigid joint
214(2)
5.2.2 Distribution procedure
216(3)
5.3 Continuous beam analysis
219(10)
5.3.1 Beam with support settlement
220(4)
5.3.2 Beam with cantilever
224(3)
5.3.3 Beam subjected to a moment
227(2)
5.4 Analysis of frames
229(35)
5.4.1 Frame without sidesway
229(5)
5.4.2 Frame with sidesway
234(30)
5.5 Conclusion
264(1)
5.6 Problems
265(6)
Chapter 6 Influence Lines of Statically Indeterminate Structures
271(38)
6.1 Introduction
271(1)
6.2 Influence lines of beams
272(14)
6.2.1 Beam with one degree of static indeterminacy
272(7)
6.2.2 Beam with two degrees of static indeterminacy
279(7)
6.3 Influence lines of frames
286(4)
6.4 Influence lines of trusses
290(14)
6.4.1 Internally statically indeterminate truss
292(8)
6.4.2 Externally statically indeterminate truss
300(4)
6.5 Conclusion
304(1)
6.6 Problems
304(5)
Chapter 7 Statically Indeterminate Arch Analysis
309(62)
7.1 Introduction
309(1)
7.2 Classification of arches
310(1)
7.3 Semicircular arch under concentrated load
311(10)
7.4 Parabolic arch under concentrated load
321(5)
7.5 Semicircular arch under distributed load
326(5)
7.6 Parabolic arch under distributed load
331(6)
7.7 Semicircular arch fixed under concentrated load
337(8)
7.8 Statically indeterminate tied arch
345(5)
7.9 Arch with many degrees of freedom
350(6)
7.10 Influence lines of statically indeterminate arch
356(8)
7.10.1 Influence lines of bi-hinged arch
356(4)
7.10.2 Influence line of fixed-end arch
360(4)
7.11 Conclusion
364(1)
7.12 Problems
365(6)
Appendix 371(4)
Bibliography 375(4)
Index 379
Salah KHALFALLAH, National Polytechnic School of Constantine, Algeria.