Muutke küpsiste eelistusi

E-raamat: Structural Analysis: Principles, Methods and Modelling

(University of New South Wales, Sydney, Australia), (University of Sydney, Australia)
  • Formaat: 576 pages
  • Ilmumisaeg: 08-Oct-2018
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000055108
  • Formaat - EPUB+DRM
  • Hind: 110,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 576 pages
  • Ilmumisaeg: 08-Oct-2018
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000055108

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The undergraduate engineering textbook reviews the principles of statics for calculating the reactions and internal actions of structural systems under different types of loads, then deals with structures requiring consideration of the structural deformations and material properties. Worked examples apply the stiffness method to truss analysis, beam elements, and frames. The closing chapters introduce the finite element method, the structural stability of columns, and nonlinear analysis. Annotation ©2015 Ringgold, Inc., Portland, OR (protoview.com) Provides Step-by-Step InstructionStructural Analysis: Principles, Methods and Modelling outlines the fundamentals involved in analyzing engineering structures, and effectively presents the derivations used for analytical and numerical formulations. This text explains practical and relevant concepts, and lays down the foundation for a solid mathematical background that incorporates MATLAB® (no prior knowledge of MATLAB is necessary), and includes numerous worked examples.Effectively Analyze Engineering StructuresDivided into four parts, the text focuses on the analysis of statically determinate structures. It evaluates basic concepts and procedures, examines the classical methods for the analysis of statically indeterminate structures, and explores the stiffness method of analysis that reinforces most computer applications and commercially available structural analysis software. In addition, it covers advanced topics that include the finite element method, structural stability, and problems involving material nonlinearity.MATLAB® files for selected worked examples are available from the book’s website. Resources available from CRC Press for lecturers adopting the book include:A solutions manual for all the problems posed in the bookNearly 2000 PowerPoint presentations suitable for use in lectures for each chapter in the bookRevision videos of selected lectures with added narrationFigure slidesStructural Analysis: Principles, Methods and Modelling exposes civil and structural engineering undergraduates to the essentials of structural analysis, and serves as a resource for students and practicing professionals in solving a range of engineering problems.

Arvustused

"This book gives a good in-depth explanation of the fundamental principles of structural analysis. Topics are dealt with in considerable detail and illustrated with copious examples." Dr Robert Vollum, Department of Civil & Environmental Engineering Imperial College London, United Kingdom

" explains very well and in simple terms topics which are often perceived by young students to be complicated and confusing, without sacrificing the formal mathematical treatment of the subject. will also serve as a reference for all those practitioners who would like to revisit or gain deeper insight into the theoretical basis of the main calculation methods nowadays adopted for the design of structures." Massimiliano Bocciarelli, Politecnico di Milano

" presents in a comprehensive way topics of structural analysis that are basic for civil and building engineers. The authors bring students toward a deep understanding of difficult issues in a very "natural" way. Final chapters, which introduce advanced analysis tools as the finite element method and issues like stability and plasticity of structures, give a clear perception of the behaviour complexity of a real structure. MATLAB tools allow facilitating and multiplying the experiences necessary to develop an intuitive approach to the structural design." Graziano Leoni, University of Camerino, Italy

Preface xi
Acknowledgments xiii
1 Introduction 1(12)
1.1 Structural analysis and design
1(1)
1.2 Structural idealisation
2(1)
1.3 Structural members and elements
2(4)
1.4 Structural systems
6(2)
1.5 Types of loads
8(2)
1.6 Supports for structures
10(3)
2 Statics of structures: Equilibrium and support reactions 13(42)
2.1 Introduction
13(1)
2.2 Coordinate systems
13(2)
2.3 Force
15(1)
2.4 Moment of a force
16(3)
2.5 Resultant force and moment
19(6)
2.6 Reactions
25(1)
2.7 Free-body diagram
25(3)
2.8 Equilibrium equations for planar structures
28(1)
2.9 External statical determinacy and stability
29(7)
2.9.1 Internally stable structures
30(1)
2.9.2 Internally unstable structures
31(5)
2.10 Determination of reactions
36(4)
2.11 Equilibrium and reactions in three-dimensional structures
40(3)
Problems
43(12)
3 Internal actions of beams and frames 55(28)
3.1 Introduction
55(1)
3.2 Internal actions at a cross-section
55(2)
3.3 Sign convention of internal actions
57(3)
3.4 Determination of internal actions and statical determinacy
60(4)
3.5 Axial force, shear force and bending moment diagrams
64(11)
Problems
75(8)
4 Statically determinate trusses 83(52)
4.1 Introduction
83(1)
4.2 Assumptions for truss analysis
84(1)
4.3 Sign convention and notation
85(1)
4.4 An introduction to the method of joints
86(6)
4.5 Method of joints in matrix form
92(8)
4.6 Method of sections
100(5)
4.7 Statical indeterminacy and stability of trusses
105(6)
4.8 Deformation of trusses
111(4)
4.9 Trusses with loaded members
115(3)
4.10 Space trusses
118(9)
Problems
127(8)
5 Euler-Bernoulli beam model 135(48)
5.1 Introduction
135(1)
5.2 Equilibrium of a small length of beam
135(2)
5.3 Kinematic (or strain-displacement) equations
137(4)
5.3.1 Axial deformations and displacements
137(2)
5.3.2 Bending (flexural) deformations and displacements
139(2)
5.3.3 Combining axial and flexural deformations
141(1)
5.4 Constitutive equations
141(8)
5.5 Method of double integration
149(3)
5.6 Governing differential equations (as a function of displacements)
152(11)
5.6.1 Boundary conditions for the axial displacement
154(1)
5.6.2 Boundary conditions for the vertical displacement
154(9)
5.7 Relationship between bending moment, shear force and member loading
163(13)
Problems
176(7)
6 Slope-deflection methods 183(46)
6.1 Introduction
183(1)
6.2 Method of double integration with step functions
184(2)
6.3 Moment-area method
186(9)
6.4 Conjugate beam method
195(9)
6.5 The slope-deflection equations
204(18)
6.5.1 Sign convention for support moments and rotations
204(1)
6.5.2 Rotation at support A, θA
205(1)
6.5.3 Rotation at support B, θB
206(1)
6.5.4 Fixed-end moments caused by applied loads
206(1)
6.5.5 Support settlement δ
207(1)
6.5.6 Slope-deflection equations
208(5)
6.5.7 Frames without sidesway
213(4)
6.5.8 Frames with sidesway
217(5)
Problems
222(7)
7 Work-energy methods 229(34)
7.1 Strain energy
229(4)
7.1.1 Axially loaded members
230(1)
7.1.2 Beams in bending
230(3)
7.2 The work theorem
233(3)
7.3 Virtual work
236(1)
7.4 Virtual work applied to trusses
236(6)
7.4.1 Principle of virtual forces
236(4)
7.4.2 Principle of virtual displacements
240(1)
7.4.3 Transfer coefficients
241(1)
7.5 Virtual work applied to beams and frames
242(8)
7.5.1 Principle of virtual forces
243(4)
7.5.2 Principle of virtual displacements
247(3)
7.6 Castigliano's theorem
250(8)
7.6.1 Application to trusses
251(4)
7.6.2 Application to beams and frames
255(3)
Problems
258(5)
8 The force method 263(36)
8.1 Introduction
263(1)
8.2 The force method applied to trusses
264(15)
8.2.1 Determination of member forces in an n-fold indeterminate truss
264(12)
8.2.2 Determination of joint displacements
276(3)
8.3 The force method applied to beams and frames
279(14)
8.3.1 Determination of internal actions
279(7)
8.3.2 Flexibility coefficients and transfer functions
286(5)
8.3.3 Deformations of statically indeterminate beams and frames
291(2)
Problems
293(6)
9 Moment distribution 299(32)
9.1 Introduction
299(1)
9.2 Basic concepts
300(2)
9.3 Continuous beams
302(11)
9.3.1 Basic approach
302(5)
9.3.2 Modification for an end span with a pinned support
307(6)
9.4 Frames without sidesway
313(2)
9.5 Frames with sidesway
315(11)
Problems
326(5)
10 Truss analysis using the stiffness method 331(38)
10.1 Overview of the stiffness method
331(1)
10.2 Sign convention, notation, coordinate systems and degrees of freedom
331(2)
10.2.1 Sign convention and notation
331(1)
10.2.2 Local and global coordinate systems
331(2)
10.2.3 Degrees of freedom of the structure
333(1)
10.3 Derivation of the stiffness matrix in local coordinates
333(5)
10.4 Transformation between local and global coordinate systems
338(7)
10.4.1 Transformation matrix for vectors
338(4)
10.4.2 Transformation matrix for the truss element
342(3)
10.5 Truss element in global coordinates
345(2)
10.6 Assembling
347(4)
10.7 Solution procedure
351(1)
10.8 Calculation of internal actions
352(4)
10.9 Nodal coordinates
356(6)
10.10 Space truss
362(3)
Problems
365(4)
11 Beam analysis using the stiffness method 369(28)
11.1 The beam element
369(2)
11.2 Derivation of the stiffness matrix
371(3)
11.3 Beam element in global coordinates
374(1)
11.4 Assembling of the stiffness elements
375(1)
11.5 Member loads
375(3)
11.6 Solution procedure and post-processing
378(14)
Problems
392(5)
12 Frame analysis using the stiffness method 397(28)
12.1 The frame element
397(1)
12.2 Derivation of the element stiffness matrix
397(3)
12.3 Transformation between local and global coordinate systems
400(3)
12.3.1 Transformation matrix for vectors
400(1)
12.3.2 Transformation matrix for the frame element
401(2)
12.4 Frame element in global coordinates
403(1)
12.5 Member loads
403(2)
12.6 Assembling, solution and post-processing
405(15)
Problems
420(5)
13 Introduction to the finite element method 425(34)
13.1 Introduction
425(1)
13.2 Euler-Bernoulli beam model
425(20)
13.2.1 Kinematic model
426(2)
13.2.2 Weak form
428(2)
13.2.3 Finite element formulation
430(6)
13.2.4 Solution procedure
436(1)
13.2.5 Post-processing
437(1)
13.2.6 Remarks on the consistency requirements for finite elements
437(8)
13.3 Timoshenko beam model
445(12)
13.3.1 Kinematic model
445(2)
13.3.2 Finite element formulation
447(10)
Problems
457(2)
14 Introduction to the structural stability of columns 459(30)
14.1 Introduction
459(1)
14.2 Assumptions
459(3)
14.3 Critical load from equilibrium
462(3)
14.4 Critical load from potential energy
465(4)
14.5 Buckling of an elastic column
469(10)
14.6 Effective buckling length
479(1)
14.7 Buckling stresses
480(5)
14.8 Imperfections in columns
485(2)
Problems
487(2)
15 Introduction to nonlinear analysis 489(40)
15.1 Introduction
489(1)
15.2 Nonlinear material properties
489(3)
15.3 Illustrative examples
492(10)
15.3.1 Axially loaded members
492(2)
15.3.2 Beams in bending
494(8)
15.4 Nonlinear analysis using the Newton-Raphson method
502(14)
15.4.1 Overview of the Newton-Raphson method
502(2)
15.4.2 Cross-sectional analysis using the Newton-Raphson method
504(12)
15.5 Finite element analysis using the Newton-Raphson method
516(11)
Problems
527(2)
Appendix A: Properties of plane sections 529(14)
Appendix B: Fixed-end moments 543(2)
Appendix C: Matrix algebra 545(12)
Index 557
Gianluca Ranzi is an associate professor and the director of the Centre for Advanced Structural Engineering at the University of Sydney, specializing in the analysis and design of concrete and composite steel-concrete structures.







Raymond Ian Gilbert

is an emeritus professor at the University of New South Wales. He has over 35 years experience in teaching structural analysis and design and is a specialist in the analysis and design of reinforced and prestressed concrete structures..