Muutke küpsiste eelistusi

E-raamat: Structural Design Against Deflection

(The University of Manchester, United Kingdom)
  • Formaat: 210 pages
  • Ilmumisaeg: 20-Mar-2020
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429878268
  • Formaat - PDF+DRM
  • Hind: 87,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 210 pages
  • Ilmumisaeg: 20-Mar-2020
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429878268

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Deflections tend to have more significance in modern structures, especially those that are either taller, longer or have wider spans than earlier designs. It is also necessary to provide desirable distributions of internal forces in order to achieve effective, efficient and elegant structures.

This book presents four structural concepts relating to deflections and internal forces in structures. It demonstrates a number of routes and physical measures together with their implementation for creating desirable distributions of internal forces and for designing structures against deflection. Hand calculation examples, with and without using the implementation measures, are provided to quantify the effectiveness and efficiency of the structural concepts. Practical examples, including several well-known structures, are considered qualitatively to illustrate the practical implementation of the structural concepts and show their structural rationale.

The book is especially suitable for advanced undergraduate and graduate students studying civil engineering or architecture and should enhance the holistic comprehension of structural engineers and architects.

Features











Develops the concepts from their principles through to their implementation





Provides worked examples in pairs and analyses real structures





Especially suits final year undergraduates and graduate students in structural engineering

Author Bio

Dr. Tianjian Ji, CEng, FIStructE, FHEA, is Reader in Structural Engineering at the University of Manchester, UK. He received the Award for Excellence in Structural Engineering Education from the Institution of Structural Engineers, UK, in 2014 and the Teaching Excellence Award from the University of Manchester in 2016. He is the primary author of Understanding and Using Structural Concepts, 2nd edition, also published by Taylor & Francis.

Arvustused

"This is a fascinating book that takes a fresh look at the interplay of fundamental structural principles and the basics of good design. Its generously illustrated by a wealth of real world examples, which both promote structural understanding and give insights into the thinking behind some of the highlights of 20th and 21st century design."

-- Martin Williams in the Structural Engineer

Preface ix
Acknowledgements xii
Author Bio xiii
1 Introduction
1(24)
1.1 Deflection of Structures
1(4)
1.2 Form, Deflection and Internal Forces
5(5)
1.3 Intuition of Structures
10(8)
1.3.1 Intuitive Knowledge
10(2)
1.3.2 Intuitive Understanding
12(1)
1.3.3 Intuitive Interpretation
13(1)
1.3.3.1 Mathematical Equations
14(1)
1.3.3.2 Observation of Structural Behaviour
14(3)
1.3.3.3 Hand Calculation
17(1)
1.3.3.4 Definition of Structural Concepts
17(1)
1.4 Design against Deflection Based on Beam Theory
18(2)
1.5 Rules of Thumb for Design
20(1)
1.6 Effectiveness, Efficiency and Elegance
21(1)
1.7 Organisation of Contents
22(3)
2 Deflections and Internal Forces
25(26)
2.1 Deflection of a Structure
25(1)
2.2 Internal Forces, Deflections and Energies of Two Rods
26(3)
2.3 Internal Forces, Deflection and Energy of a Structure
29(3)
2.4 Physical Meaning of A2C
32(2)
2.5 Intuitive Interpretation
34(2)
2.6 Deflections due to Bending Moment, Axial and Shear Forces
36(3)
2.7 Characteristics of the Structural Concepts
39(6)
2.7.1 The Four Structural Concepts
39(1)
2.7.2 Generality
39(1)
2.7.3 Interchangeability
40(1)
2.7.4 Compatibility
41(2)
2.7.5 Reversibility
43(1)
2.7.6 Relative Performance
44(1)
2.8 Implementation
45(4)
2.9 Summary
49(2)
3 More Direct Internal Force Paths
51(37)
3.1 Routes to Implementation
51(1)
3.2 Hand Calculation Examples
52(12)
3.2.1 Effect of the Four Bracing Criteria
52(5)
3.2.2 The Most and Least Effective Bracing Patterns for a Simple Frame
57(7)
3.3 Practical Examples
64(19)
3.3.1 Tall Buildings
64(1)
3.3.1.1 John Hancock Center, Chicago
64(4)
3.3.1.2 Leadenhall Building, London
68(5)
3.3.2 Temporary Grandstands
73(2)
3.3.2.1 Collapse of a Temporary Grandstand in Corsica, France
75(1)
3.3.2.2 A Temporary Grandstand in Eastbourne, UK
76(4)
3.3.2.3 Two Further Cases
80(2)
3.3.3 Scaffolding Structures
82(1)
3.3.3.1 Collapse of a Scaffolding Structure, Manchester
82(1)
3.3.3.2 Lack of Direct Internal Force Paths
83(1)
3.4 Further Comments
83(5)
4 Smaller Internal Forces
88(37)
4.1 Routes to Implementation
88(2)
4.2 Hand Calculation Examples
90(14)
4.2.1 A Simply Supported Beam with and without Overhangs
90(6)
4.2.2 Y Shaped Columns with and without a Horizontal Tendon
96(8)
4.3 Practical Examples
104(18)
4.3.1 Structures with Overhangs
104(1)
4.3.1.1 HSBC Hong Kong Headquarters, China
104(5)
4.3.1.2 Roof of the Harbin Airport Lounge, China
109(1)
4.3.2 Tree-Like Structures
110(1)
4.3.2.1 Trees and Tree-Like Structures
110(3)
4.3.2.2 Palazzetto dello Sport, Roma
113(1)
4.3.2.3 Hessenring Footbridge, Germany
114(1)
4.3.2.4 Further Examples
115(4)
4.3.3 Self-Balancing
119(1)
4.3.3.1 Madrid Racecourse, Spain
119(2)
4.3.3.2 Salford Quays Lift Bridge, UK
121(1)
4.4 Further Comments
122(3)
5 More Uniform Distribution of Internal Forces
125(29)
5.1 Routes to Implementation
125(1)
5.2 Hand Calculation Examples
125(10)
5.2.1 A Cantilever with and without an External Elastic Support
125(3)
5.2.2 An Eight Storey, Four Bay Frame with Different Bracing Arrangements
128(7)
5.3 Practical Examples
135(18)
5.3.1 Structures with External Elastic Supports
135(1)
5.3.1.1 Samuel Beckett Bridge, Dublin
135(3)
5.3.1.2 Serreria Bridge, Valencia
138(1)
5.3.1.3 Katehaki Pedestrian Bridge, Athens
139(1)
5.3.2 Structures with Internal Horizontal Elastic Supports
139(1)
5.3.2.1 Manchester Central Convention Complex, UK
139(4)
5.3.2.2 Raleigh Arena, USA
143(2)
5.3.3 Structures Derived from Topology Optimisation
145(1)
5.3.3.1 Evolutionary Structural Optimisation (ESO)
145(3)
5.3.3.2 A Bridge with a Flat Deck on the Top
148(1)
5.3.3.3 A Bridge with a Flat Deck at the Middle Level
149(1)
5.3.3.4 A Long-Span Footbridge with an Overall Depth Limit
150(3)
5.4 Further Comments
153(1)
6 Converting More Bending Moments Into Axial Forces
154(31)
6.1 Routes to Implementation
154(1)
6.2 Hand Calculation Examples
155(13)
6.2.1 A Beam with and without a Vertical Internal Elastic Support
155(8)
6.2.2 Rigid Plates Supported by Vertical and Inclined Members
163(5)
6.3 Practical Examples
168(14)
6.3.1 Structures with Vertical Internal Elastic Supports
168(1)
6.3.1.1 Spinningfields Footbridge, Manchester
168(2)
6.3.1.2 The Roof of the Badminton Arena for the 2008 Olympic Games, Beijing
170(5)
6.3.2 Structures Supported by Inclined Members
175(1)
6.3.2.1 Three Types of Support to Superstructures
175(2)
6.3.2.2 Ontario College of Art and Design, Toronto
177(1)
6.3.2.3 Roof Supports of Terminal 5 at Heathrow Airport, London
178(2)
6.3.3 Using Self-Weight of Structural Members---Alamillo Bridge, Seville
180(2)
6.4 Further Comments
182(3)
7 Concluding Remarks
185(3)
Bibliography 188(1)
Index 189
Dr Tianjian Ji, CEng, FIStructE, FHEA, is Reader in Structural Engineering at the University of Manchester, UK. He received the Award for Excellence in Structural Engineering Education from the Institution of Structural Engineers, UK, in 2014 and the Teaching Excellence Award from the University of Manchester in 2016. He is the primary author of Understanding and Using Structural Concepts 2nd edition, also published by Taylor & Francis.