Muutke küpsiste eelistusi

E-raamat: Structural Equation Modeling Using R/SAS: A Step-by-Step Approach with Real Data Analysis

  • Formaat: 428 pages
  • Ilmumisaeg: 21-Aug-2023
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781000920888
  • Formaat - PDF+DRM
  • Hind: 119,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 428 pages
  • Ilmumisaeg: 21-Aug-2023
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781000920888

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

There has been considerable attention to making the methodologies of structural equation modeling available to researchers, practitioners, and students along with commonly used software. Structural Equation Modelling Using R/SAS aims to bring it all together to provide a concise point-of-reference.



There has been considerable attention to making the methodologies of structural equation modeling available to researchers, practitioners, and students along with commonly used software. Structural Equation Modelling Using R/SAS aims to bring it all together to provide a concise point-of-reference for the most commonly used structural equation modeling from the fundamental level to the advanced level. This book is intended to contribute to the rapid development in structural equation modeling and its applications to real-world data. Straightforward explanations of the statistical theory and models related to structural equation models are provided, using a compilation of a variety of publicly available data, to provide an illustration of data analytics in a step-by-step fashion using commonly used statistical software of R and SAS. This book is appropriate for anyone who is interested in learning and practicing structural equation modeling, especially in using R and SAS. It is useful for applied statisticians, data scientists and practitioners, applied statistical analysts and scientists in public health, and academic researchers and graduate students in statistics, whilst also being of use to R&D professionals/practitioners in industry and governmental agencies.

Key Features:

  • Extensive compilation of commonly used structural equation models and methods from fundamental to advanced levels
  • Straightforward explanations of the theory related to the structural equation models
  • Compilation of a variety of publicly available data
  • Step-by-step illustrations of data analysis using commonly used statistical software R and SAS
  • Data and computer programs are available for readers to replicate and implement the new methods to better understand the book contents and for future applications
  • Handbook for applied statisticians and practitioners

Arvustused

"In sum, this book is an essential read for practitioners and students who seek to use SEM in their research. It bridges the gap between theory and practice in a manner that is both comprehensive and understandable. The structured layout, practical examples with statistical code in R and SAS, and depth of coverage make this book a valuable asset in the field of SEM."

Lifeng Lin, University of Arizona, U.S.A, Journal of the American Statistical Association, Feburary 2024.

1. Linear Regression to Path Analysis
2. Latent Variables - Confirmatory
Factor Analysis
3. Mediation Analysis
4. Structural Equation Modeling with
Non-Normal Data
5. Structural Equation Modeling with Categorical Data
6.
Multi-Group Data Analysis: Continuous Data
7. Multi-Group Data Analysis:
Categorical Data
8. Pain-Related Disability for People with Temporomandibular
Disorder: Full Structural Equation Modeling
9. Breast-Cancer Post-Surgery
AssessmentLatent Growth-Curve Modeling
10. Full Longitudinal Mediation
Modeling
11. Multi-Level Structural Equation Modeling
12. Sample Size
Determination and Power Analysis
Ding-Geng Chen, Ph.D. Professor and Executive Director in Biostatistics College of Health Solutions Arizona State University, USA.

Yiu-Fai Yung, Ph.D. Senior Manager, Advanced Analytics R & D, SAS Institute Inc.