Muutke küpsiste eelistusi

E-raamat: Structural Health Monitoring: An Advanced Signal Processing Perspective

Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.
Advanced Signal Processing for Structural Health Monitoring.- Signal
Post-Processing for Accurate Evaluation of the Natural
Frequencies.- Holobalancing Method and its Improvement by Reselection
of Balancing Object.- Wavelet Transform Based On Inner Product for Fault
Diagnosis of Rotating Machinery.- Wavelet Based Spectral Kurtosis and
Kurtogram: A Smart and Sparse Characterization of Impulsive Transient
Vibration.- Time-Frequency Manifold for Machinery Fault Diagnosis.- Matching
Demodulation Transform and its Application in Machine Fault
Diagnosis.- Compressive Sensing: A New Insight to Condition Monitoring
of Rotary Machinery.- Sparse Representation of the Transients in Mechanical
Signals.- Fault Diagnosis of Rotating Machinery Based on Empirical Mode
Decomposition.- Bivariate Empirical Mode Decomposition and Its Applications
in Machine Condition Monitoring.- Time-Frequency Demodulation Analysis Based
on LMD and Its Applications.- On The Use of Stochastic Resonance in
Mechanical Fault Signal Detection.