Muutke küpsiste eelistusi

E-raamat: Student's Guide to Lagrangians and Hamiltonians

(San José State University, California)
  • Formaat: EPUB+DRM
  • Sari: Student's Guides
  • Ilmumisaeg: 21-Nov-2013
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781107703193
  • Formaat - EPUB+DRM
  • Hind: 30,86 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Student's Guides
  • Ilmumisaeg: 21-Nov-2013
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781107703193

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A concise but rigorous treatment of variational techniques, focussing primarily on Lagrangian and Hamiltonian systems, this book is ideal for physics, engineering and mathematics students. The book begins by applying Lagrange's equations to a number of mechanical systems. It introduces the concepts of generalized coordinates and generalized momentum. Following this the book turns to the calculus of variations to derive the Euler–Lagrange equations. It introduces Hamilton's principle and uses this throughout the book to derive further results. The Hamiltonian, Hamilton's equations, canonical transformations, Poisson brackets and Hamilton–Jacobi theory are considered next. The book concludes by discussing continuous Lagrangians and Hamiltonians and how they are related to field theory. Written in clear, simple language and featuring numerous worked examples and exercises to help students master the material, this book is a valuable supplement to courses in mechanics.

Arvustused

' in a logically clear and physically rigorous way the book highlights the landmarks of the analytical mechanics so that the attentive student can be easily prepared for the exam. It is suitable for studying in intermediate and upper-level undergraduate courses of classical mechanics ' Vladimir I. Pulov, Journal of Geometry and Symmetry in Physics

Muu info

A concise treatment of variational techniques, focussing on Lagrangian and Hamiltonian systems, ideal for physics, engineering and mathematics students.
Introduction ix
Acknowledgements x
I LAGRANGIAN MECHANICS
1(90)
1 Fundamental concepts
3(41)
1.1 Kinematics
3(2)
1.2 Generalized coordinates
5(2)
1.3 Generalized velocity
7(2)
1.4 Constraints
9(2)
1.5 Virtual displacements
11(1)
1.6 Virtual work and generalized force
12(1)
1.7 Configuration space
13(2)
1.8 Phase space
15(1)
1.9 Dynamics
15(3)
1.9.1 Newton's laws of motion
15(1)
1.9.2 The equation of motion
16(1)
1.9.3 Newton and Leibniz
16(2)
1.10 Obtaining the equation of motion
18(7)
1.10.1 The equation of motion in Newtonian mechanics
19(1)
1.10.2 The equation of motion in Lagrangian mechanics
19(6)
1.11 Conservation laws and symmetry principles
25(16)
1.11.1 Generalized momentum and cyclic coordinates
27(3)
1.11.2 The conservation of linear momentum
30(3)
1.11.3 The conservation of angular momentum
33(3)
1.11.4 The conservation of energy and the work function
36(5)
1.12 Problems
41(3)
2 The calculus of variations
44(26)
2.1 Introduction
44(1)
2.2 Derivation of the Euler--Lagrange equation
45(13)
2.2.1 The difference between δ and d
52(3)
2.2.2 Alternate forms of the Euler--Lagrange equation
55(3)
2.3 Generalization to several dependent variables
58(2)
2.4 Constraints
60(7)
2.4.1 Holonomic constraints
60(4)
2.4.2 Non-holonomic constraints
64(3)
2.5 Problems
67(3)
3 Lagrangian dynamics
70(21)
3.1 The principle of d'Alembert. A derivation of Lagrange's equations
70(3)
3.2 Hamilton's principle
73(2)
3.3 Derivation of Lagrange's equations
75(1)
3.4 Generalization to many coordinates
75(2)
3.5 Constraints and Lagrange's λ-method
77(4)
3.6 Non-holonomic constraints
81(2)
3.7 Virtual work
83(3)
3.7.1 Physical interpretation of the Lagrange multipliers
84(2)
3.8 The invariance of the Lagrange equations
86(2)
3.9 Problems
88(3)
II HAMILTONIAN MECHANICS
91(77)
4 Hamilton's equations
93(16)
4.1 The Legendre transformation
93(4)
4.1.1 Application to thermodynamics
95(2)
4.2 Application to the Lagrangian. The Hamiltonian
97(1)
4.3 Hamilton's canonical equations
98(2)
4.4 Derivation of Hamilton's equations from Hamilton's principle
100(1)
4.5 Phase space and the phase fluid
101(3)
4.6 Cyclic coordinates and the Routhian procedure
104(2)
4.7 Symplectic notation
106(1)
4.8 Problems
107(2)
5 Canonical transformations; Poisson brackets
109(25)
5.1 Integrating the equations of motion
109(1)
5.2 Canonical transformations
110(7)
5.3 Poisson brackets
117(2)
5.4 The equations of motion in terms of Poisson brackets
119(10)
5.4.1 Infinitesimal canonical transformations
120(4)
5.4.2 Canonical invariants
124(3)
5.4.3 Liouville's theorem
127(1)
5.4.4 Angular momentum
128(1)
5.5 Angular momentum in Poisson brackets
129(3)
5.6 Problems
132(2)
6 Hamilton-Jacobi theory
134(10)
6.1 The Hamilton--Jacobi equation
135(2)
6.2 The harmonic oscillator -- an example
137(2)
6.3 Interpretation of Hamilton's principal function
139(1)
6.4 Relationship to Schrodinger's equation
140(2)
6.5 Problems
142(2)
7 Continuous systems
144(24)
7.1 A string
144(6)
7.2 Generalization to three dimensions
150(1)
7.3 The Hamiltonian density
151(3)
7.4 Another one-dimensional system
154(8)
7.4.1 The limit of a continuous rod
156(4)
7.4.2 The continuous Hamiltonian and the canonical field equations
160(2)
7.5 The electromagnetic field
162(4)
7.6 Conclusion
166(1)
7.7 Problems
166(2)
Further reading 168(1)
Answers to selected problems 169(2)
Index 171
Patrick Hamill is Professor Emeritus of Physics at San José State University. He has taught physics for over thirty years and his research interests are in celestial mechanics and atmospheric physics.