Muutke küpsiste eelistusi

E-raamat: Studying Distant Galaxies: A Handbook Of Methods And Analyses

(Paris Observatory, France), (Paris Observatory, France), (Paris Observatory, France), (Paris Observatory, France)
  • Formaat: 400 pages
  • Sari: Advanced Textbooks in Physics
  • Ilmumisaeg: 15-Nov-2016
  • Kirjastus: World Scientific Europe Ltd
  • Keel: eng
  • ISBN-13: 9781786340566
  • Formaat - EPUB+DRM
  • Hind: 45,63 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 400 pages
  • Sari: Advanced Textbooks in Physics
  • Ilmumisaeg: 15-Nov-2016
  • Kirjastus: World Scientific Europe Ltd
  • Keel: eng
  • ISBN-13: 9781786340566

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Distant galaxies encapsulate the various stages of galaxy evolution and formation from over 95% of the development of the universe. As early as twenty-five years ago, little was known about them, however since the first systematic survey was completed in the 1990s, increasing amounts of resources have been devoted to their discovery and research. This book summarises for the first time the numerous techniques used for observing, analysing, and understanding the evolution and formation of these distant galaxies.In this rapidly expanding research field, this text is an every-day companion handbook for graduate students and active researchers. It provides guidelines in sample selection, imaging, integrated spectroscopy and 3D spectroscopy, which help to avoid the numerous pitfalls of observational and analysis techniques in use in extragalactic astronomy. It also paves the way for establishing relations between fundamental properties of distant galaxies. At each step, the reader is assisted with numerous practical examples and ready-to-use methodology to help understand and analyse research.François Hammer worked initially in general relativity and made the first modelling of gravitational lenses prior to their spectroscopic confirmation. Following this, he became co-leader of the first complete survey of distant galaxies, the Canada-France-Redshift Survey. This led to the discovery of the strong decrease of the cosmic star formation density measured from UV light as z=1, which, alongside Hector Flores, they confirmed as bolometric and dust independent. With Mathieu Puech, they then pioneered the 3D spectroscopy of distant galaxies, leading to a major increase of understanding of the dynamic state of distant galaxies evidenced by the scatter of the Tully-Fisher relation. This led them to propose, with the addition to the team of Myriam Rodrigues, that galactic disks may survive or be rebuilt in gas-rich mergers, a scenario that is consistent with contemporary cosmological simulations. Besides extensive observational experience, the authors have led, or are leading, several instruments implemented or to be implemented at the largest telescopes, including VLT/Giraffe, VLT/X-shooter, VLT/MOONS and E-ELT/MOSAIC. They have also developed several observational techniques in adaptive optics, and in sky subtraction for integral field units and fibre instruments.
Foreword v
List of Figures
vii
List of Tables
xi
List of Examples
xiii
Glossary xvii
Introduction xxiii
1 Samples and Selection Effects
1(54)
1.1 Introduction: which sample for which science goal?
1(4)
1.1.1 General rules to optimize the scientific returns from a survey of distant galaxies
1(4)
1.2 General rules for estimating magnitudes
5(4)
1.2.1 Monochromatic and integrated magnitudes
5(1)
1.2.2 Photometric systems
6(1)
1.2.3 Total magnitudes and proxies
7(1)
1.2.4 Absolute magnitudes
8(1)
1.3 Pre-selection of a sample prior to redshift measurement
9(12)
1.3.1 Photometric catalogs
9(1)
1.3.2 Statistics: which size for a redshift survey?
9(2)
1.3.3 Cosmological variance
11(1)
1.3.4 Depth of the photometry and selection effects related to surface-brightness
11(2)
1.3.5 Other selection effects: Malmquist bias, Eddington bias, and lensing effects
13(4)
1.3.6 K-correction and choice of the selecting magnitude
17(4)
1.4 Redshift surveys
21(13)
1.4.1 Redshift measurements and spectroscopic selection effects
21(3)
1.4.2 Determination of the LF, uncertainties and completeness tests
24(6)
1.4.3 Examples of surveys (CFRS, DEEP2, VVDS, zCOSMOS, and WIGGLEZ)
30(4)
1.5 Photometric redshifts
34(3)
1.6 Selection of very distant galaxies at z >> 1
37(7)
1.6.1 Lyman break galaxies (LBGs)
37(3)
1.6.2 Balmer and 400nm break drop-out galaxies
40(1)
1.6.3 Lyα emitters (LAEs)
41(1)
1.6.4 Indirect probes: damped Lyα systems (DLAs) and gamma ray burst hosts
41(1)
1.6.5 Dust-enshrouded galaxies
42(1)
1.6.6 Towards an overview of the high-z galaxy population and a fair determination of the LFs
42(2)
1.7 Relating distant and nearby galaxies
44(11)
Bibliography
48(7)
2 Imaging and Photometry
55(100)
2.1 Introduction
55(2)
2.2 Basic Elements of imaging and image analysis
57(18)
2.2.1 Spatial resolution
57(5)
2.2.2 Depth
62(6)
2.2.3 Spectral Bandwidth
68(5)
2.2.4 Observing with imagers
73(2)
2.3 Data Reduction
75(11)
2.3.1 Basic principles
75(2)
2.3.2 Description of basic calibration frames
77(1)
2.3.3 Reducing and calibrating images
78(4)
2.3.4 S/N ratio
82(4)
2.4 Galaxy Morphology
86(21)
2.4.1 Morphological classifications
87(2)
2.4.2 Characterizing morphology at high redshifts
89(3)
2.4.3 Empirical methods --- Eyeball classifications
92(1)
2.4.4 Light decomposition using software
92(4)
2.4.5 Automatic methods with two or more parameters
96(5)
2.4.6 A pragmatic and conservative approach to classify distant galaxies
101(6)
2.5 Multi-wavelength photometry
107(12)
2.5.1 Cross-correlating images at different wavelengths
108(2)
2.5.2 Aperture photometry
110(9)
2.6 Spectral energy distributions (SEDs)
119(36)
2.6.1 Impact of the stellar populations: which wavelength tells you what?
119(2)
2.6.2 Impact of dust and gas
121(5)
2.6.3 Estimating galaxy properties from an SED
126(4)
2.6.4 Estimating stellar mass
130(6)
2.6.5 Estimating galaxy SFRs
136(5)
Bibliography
141(14)
3 Integrated Spectroscopy
155(112)
3.1 Introduction
155(7)
3.1.1 Desiccating a galaxy spectrum
157(4)
3.1.2 Integrated spectroscopy of distant targets
161(1)
3.2 Basics of spectroscopy
162(4)
3.2.1 Multi-object spectrographs
164(1)
3.2.2 Slit-less grism spectrographs
165(1)
3.2.3 NIR spectrographs
166(1)
3.3 Preparing observations
166(12)
3.3.1 The choice of spectral resolution
167(1)
3.3.2 Optimization of the S/N ratio
168(4)
3.3.3 Minimizing the impact of the sky background
172(6)
3.4 Data reduction
178(8)
3.4.1 Main steps
178(5)
3.4.2 Characterize the quality of the data reduction
183(3)
3.5 Emission lines
186(8)
3.5.1 Emission line properties
186(2)
3.5.2 Proper methods for measuring emission lines
188(5)
3.5.3 Low S/N regime: measurement bias
193(1)
3.6 Emission diagnostics of the ionized ISM
194(25)
3.6.1 Dust extinction
195(8)
3.6.2 Active galactic nuclei
203(4)
3.6.3 Star formation rate (SFRs)
207(3)
3.6.4 Direct measurement of the gas metallicity (Te method)
210(5)
3.6.5 Indirect metallicity estimates from strong line ratios
215(4)
3.7 Absorption line diagnostics of ISM & IGM
219(20)
3.7.1 Measuring absorption lines
220(4)
3.7.2 Back-illuminated neutral Hydrogen gas
224(9)
3.7.3 Absorption lines from the ISM of distant starbursts
233(6)
3.8 Properties of stellar populations
239(14)
3.8.1 Spectral Evolution of SSPs
241(4)
3.8.2 Lick indices
245(3)
3.8.3 Full spectra fitting
248(5)
3.8.4 Velocity dispersion
253(1)
3.9 Conclusion
253(14)
Bibliography
255(12)
4 Integral Field Spectroscopy
267(56)
4.1 Introduction
267(4)
4.2 Basics of IFU instruments
271(10)
4.2.1 Fiber instruments
272(1)
4.2.2 Image sheer instruments
273(1)
4.2.3 Compromise between resolutions and S/N
274(1)
4.2.4 Spatial resolution
275(2)
4.2.5 Spectral resolution and crosstalk
277(3)
4.2.6 Observing with IFU instruments
280(1)
4.3 Data reduction of IFU observations
281(9)
4.3.1 Reduction of fiber data
282(2)
4.3.2 Reduction of image sheer data
284(1)
4.3.3 Correcting for atmospheric dispersion
285(1)
4.3.4 Spatial, spectral smoothing, and binning
286(2)
4.3.5 Optimizing sky subtraction with NIR IFUs
288(2)
4.4 Mapping galaxy properties from a data cube
290(7)
4.4.1 Measuring emission lines: methods and error budget
291(3)
4.4.2 Mapping physical properties
294(1)
4.4.3 Mapping the kinematics
295(2)
4.5 Kinematics of distant galaxies
297(21)
4.5.1 A fundamental reference: kinematics of nearby galaxies
297(5)
4.5.2 Kinematics of distant galaxies and beam smearing
302(6)
4.5.3 Classifications based on pure kinematics
308(5)
4.5.4 The kinematic classification
313(4)
4.5.5 The morpho-kinematic classification
317(1)
4.6 Conclusion
318(5)
Bibliography
318(5)
5 Applications and Scaling Relations
323(32)
5.1 Applications to different distant galaxy studies
323(1)
5.2 Dissecting the properties of distant galaxies
324(7)
5.2.1 An example of a multi-instrument and multi-wavelength survey
324(1)
5.2.2 Description of a few individual distant galaxies
325(5)
5.2.3 Spiral disk building and merger rate
330(1)
5.3 Evolution of scaling relations
331(14)
5.3.1 Tully--Fisher Relation
331(6)
5.3.2 The evolution of the M--Z relation
337(5)
5.3.3 SFR-Mstellar diagram
342(3)
5.4 An important challenge: baryonic mass estimate
345(10)
5.4.1 Stellar mass estimates
345(2)
5.4.2 Gas mass estimates
347(2)
Bibliography
349(6)
Appendix A Most intense emission and absorption lines 355(4)
Index 359