Muutke küpsiste eelistusi

E-raamat: Sturm-Liouville Operators, Their Spectral Theory, and Some Applications

  • Formaat: 927 pages
  • Sari: Colloquium Publications 67
  • Ilmumisaeg: 08-Jul-2024
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470478247
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 131,27 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 927 pages
  • Sari: Colloquium Publications 67
  • Ilmumisaeg: 08-Jul-2024
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470478247
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a detailed treatment of the various facets of modern Sturm-Liouville theory, including such topics as Weyl:ndash;Titchmarsh theory, classical, renormalized, and perturbative oscillation theory, boundary data maps, traces and determinants for Sturm-Liouville operators, strongly singular SturmLiouville differential operators, generalized boundary values, and Sturm-Liouville operators with distributional coefficients. To illustrate the theory, the book develops an array of examples from Floquet theory to short-range scattering theory, higher-order KdV trace relations, elliptic and algebro-geometric finite gap potentials, reflectionless potentials and the Sodin-Yuditskii class, as well as a detailed collection of singular examples, such as the Bessel, generalized Bessel, and Jacobi operators. A set of appendices contains background on the basics of linear operators and spectral theory in Hilbert spaces, Schatten-von Neumann classes of compact operators, self-adjoint extensions of symmetric operators, including the Friedrichs and Krein-von Neumann extensions, boundary triplets for ODEs, Krein-type resolvent formulas, sesquilinear forms, Nevanlinna-Herglotz functions, and Bessel functions.
Introduction
A bit of physical motivation
Preliminaries on ODEs
The regular problem on a compact interval $[ a,b]\subset\mathbb{R}$
The singular problem on $(a,b)\subseteq \mathbb{R}$
The spectral function for a problem with a regular endpoint
The 2 x 2 spectral matrix function in the presence of two singular interval
endpoints for the problem on $(a,b)\subseteq\mathbb{R}$
Classical oscillation theory, principal solutions, and nonprinicpal
solutions
Renormalized oscillation theory
Perturbative oscillation criteria and perturbative Hardy-type inequalities
Boundary data maps
Spectral zeta functions and computing traces and determinants for
Sturm-Liouville operators
The singular problem on $(a,b)\subseteq\mathbb{R}$ revisited
Four-coefficient Sturm-Liouville operators and distributional potential
coefficients
Epilogue: Applications to some partial differnetial equations of mathematical
physics
Basic facts on linear operators
Basics of spectral theory
Classes of bounded linear operators
Extensions of symmetric operators
Elements of sesquilinear forms
Basics of Nevanlinna-Herglotz functions
Bessel functions in a nutshell
Bibliography
Author index
List of symbols
Subject index
Fritz Gesztesy, Baylor University, Waco, TX, Roger Nichols, The University of Tennessee at Chattanooga, TN, and Maxim Zinchenko, University of New Mexico, Albuquerque, NM.