|
|
1 | (31) |
|
1.1 Historical Perspective |
|
|
1 | (4) |
|
1.2 Excitations in Solids |
|
|
5 | (27) |
|
1.2.1 Phonons and the Electron-Phonon Interaction |
|
|
5 | (12) |
|
1.2.2 Diabatic Representation and Polaronic States |
|
|
17 | (4) |
|
1.2.3 Electronic Excitations |
|
|
21 | (8) |
|
1.2.4 Magnetic Excitations |
|
|
29 | (3) |
|
|
32 | (94) |
|
|
32 | (11) |
|
2.1.1 The General Picture and Main Challenges |
|
|
32 | (1) |
|
2.1.2 Superconductivity as a `Giant' Non-Adiabatic Phenomenon |
|
|
33 | (1) |
|
2.1.3 The `Cooper' Theorem |
|
|
34 | (2) |
|
|
36 | (2) |
|
2.1.5 Microscopic Theories and the Gor'kov Method |
|
|
38 | (2) |
|
2.1.6 The Energy Gap and the Coherence Length |
|
|
40 | (2) |
|
2.1.7 Pairing and Orbital Momenta |
|
|
42 | (1) |
|
|
43 | (18) |
|
|
43 | (4) |
|
2.2.2 Critical Temperature |
|
|
47 | (11) |
|
2.2.3 Properties of Superconductors with Strong Coupling |
|
|
58 | (3) |
|
2.3 The Electron-Lattice Interaction: Special Aspects |
|
|
61 | (6) |
|
2.3.1 The Polaronic Effect and its Impact on Tc |
|
|
61 | (4) |
|
2.3.2 The Van Hove Scenario |
|
|
65 | (1) |
|
2.3.3 Bipolarons, and BEC versus BCS |
|
|
66 | (1) |
|
2.3 A Manifestations of the Phonon Mechanism, and a Proposed Experiment |
|
|
67 | (3) |
|
2.4 Is There an Upper Limit for Tc? |
|
|
70 | (1) |
|
2.5 Electronic Mechanisms and the Little Model |
|
|
71 | (5) |
|
2.5.1 Two Electronic Groups, and High Tc |
|
|
71 | (3) |
|
2.5.2 The `Sandwich' Excitonic Mechanism |
|
|
74 | (1) |
|
2.5.3 Three-Dimensional Systems |
|
|
74 | (2) |
|
2.6 Plasmons in Layered Conductors |
|
|
76 | (3) |
|
|
79 | (47) |
|
|
79 | (1) |
|
2.7.2 Localised versus Itinerant Aspects of Electrons in Transition Metals and Compounds |
|
|
80 | (2) |
|
2.7.3 Magnetic Pairing in the Band Limit |
|
|
82 | (5) |
|
2.7.4 Magnetic Pairing in the Hubbard Model in the Regime of Strong Electron Correlations |
|
|
87 | (39) |
|
3 Properties: Spectroscopy |
|
|
126 | (75) |
|
3.1 Macroscopic Quantisation |
|
|
126 | (21) |
|
|
126 | (2) |
|
3.1.2 The Josephson Effect |
|
|
128 | (8) |
|
3.1.3 The Ginzburg-Landau theory, and Vortices |
|
|
136 | (8) |
|
3.1.4 The Little-Parks Effect |
|
|
144 | (1) |
|
3.1.5 The Search for the Lossless Current State |
|
|
145 | (2) |
|
3.2 Multigap Superconductivity |
|
|
147 | (11) |
|
3.2.1 Multigap Superconductivity: The General Picture |
|
|
147 | (1) |
|
3.2.2 Critical Temperature |
|
|
148 | (2) |
|
3.2.3 The Energy Spectrum |
|
|
150 | (2) |
|
3.2.4 Properties of Two-Gap Superconductors |
|
|
152 | (3) |
|
3.2.5 The Strong Magnetic Field and the Ginzburg--Landau Equations for a Multigap Superconductor |
|
|
155 | (2) |
|
3.2.6 Induced Two-Band Superconductivity |
|
|
157 | (1) |
|
3.2.7 Symmetry of the Order Parameter and the Multiband Superconductor |
|
|
158 | (1) |
|
3.3 Impurity Scattering and Pair Breaking |
|
|
158 | (11) |
|
|
158 | (3) |
|
3.3.2 Gapless Superconductivity |
|
|
161 | (1) |
|
3.3.3 Symmetry of the Order Parameter and Pair Breaking |
|
|
162 | (7) |
|
3.4 Induced Superconductivity: The Proximity Effect |
|
|
169 | (12) |
|
3.4.1 The Proximity `Sandwich' |
|
|
169 | (1) |
|
3.4.2 Critical Temperature |
|
|
170 | (7) |
|
3.4.3 Proximity Effects in Ferromagnetic--Superconductor Heterostructures |
|
|
177 | (4) |
|
3.4.4 The Proximity Effect versus the Two-Gap Model |
|
|
181 | (1) |
|
|
181 | (11) |
|
|
181 | (1) |
|
3.5.2 The Coulomb Pseudopotential |
|
|
182 | (1) |
|
3.5.3 Multicomponent Lattices and Two Coupling Constants |
|
|
182 | (2) |
|
|
184 | (1) |
|
3.5.5 The Isotope Effect in Proximity Systems |
|
|
185 | (1) |
|
3.5.6 Magnetic Impurities and the Isotope Effect |
|
|
186 | (1) |
|
3.5.7 The Polaronic Effect and Isotope Substitution |
|
|
187 | (3) |
|
3.5.8 Penetration Depth and Isotopic Dependence |
|
|
190 | (2) |
|
3.6 Fluctuations in Superconductors |
|
|
192 | (9) |
|
3.6.1 The Ginzburg--Levanyuk Parameter |
|
|
193 | (1) |
|
3.6.2 The Effect of Fluctuations on Specific Heat |
|
|
194 | (1) |
|
3.6.3 Magnetic Susceptibility |
|
|
195 | (2) |
|
|
197 | (2) |
|
|
199 | (2) |
|
|
201 | (27) |
|
|
201 | (16) |
|
4.1.1 Tunnelling Spectroscopy |
|
|
201 | (8) |
|
4.1.2 Scanning Tunnelling Microscopy and Spectroscopy |
|
|
209 | (1) |
|
4.1.3 Other Spectroscopic Techniques |
|
|
210 | (7) |
|
4.2 High-Pressure Techniques |
|
|
217 | (2) |
|
4.3 Preparation of Superconducting Thin Films and Tunnel Junctions |
|
|
219 | (6) |
|
4.3.1 PVD Thin-Film Techniques |
|
|
219 | (4) |
|
4.3.2 CVD Thin-Film Preparation |
|
|
223 | (2) |
|
4.4 Preparation of Josephson Tunnel Junctions |
|
|
225 | (1) |
|
4.5 Novel Experimental Techniques |
|
|
226 | (2) |
|
4.5.1 The Nano-Assembly Technique and the Little Mechanism |
|
|
226 | (2) |
|
5 Materials I: High-Tc Copper Oxides |
|
|
228 | (53) |
|
|
228 | (2) |
|
5.2 Properties of the Normal State |
|
|
230 | (9) |
|
|
230 | (1) |
|
5.2.2 Doping and the Phase Diagram |
|
|
231 | (3) |
|
|
234 | (5) |
|
5.3 Properties of the Superconducting State |
|
|
239 | (4) |
|
|
239 | (1) |
|
5.3.2 The Critical Field Hc2 |
|
|
239 | (1) |
|
5.3.3 The Two-Gap Spectrum |
|
|
240 | (1) |
|
5.3.4 Symmetry of the Order Parameter |
|
|
241 | (2) |
|
5.4 The Origin of High-Tc Superconductivity in Cuprates |
|
|
243 | (33) |
|
|
243 | (1) |
|
5.4.2 The Electron-Phonon Interaction and the High-Tc State |
|
|
244 | (3) |
|
5.4.3 The Phonon Mechanism and the Polaronic States |
|
|
247 | (3) |
|
5.4.4 Dynamic Screening, the Plasmon Mechanism, and the Coexistence of Phonon and Plasmon Mechanisms |
|
|
250 | (3) |
|
5.4.5 Strong Correlations, Electronic Structure, and ARPES |
|
|
253 | (23) |
|
5.5 Theoretical Models of the Mechanism of High Tc in Cuprates: Phonon versus Magnetic Pairing or Phonon and Magnetic Pairing Together? |
|
|
276 | (5) |
|
6 Inhomogeneous Superconductivity And The `Pseudogap' State Of Novel Superconductors |
|
|
281 | (28) |
|
6.1 `Pseudogap' State: Main Properties |
|
|
281 | (7) |
|
6.1.1 Anomalous Diamagnetism above Tc |
|
|
282 | (2) |
|
|
284 | (3) |
|
|
287 | (1) |
|
6.1.4 The `Giant' Josephson Effect |
|
|
287 | (1) |
|
6.1.5 Transport Properties |
|
|
287 | (1) |
|
6.2 The Inhomogeneous State |
|
|
288 | (4) |
|
6.2.1 The Qualitative Picture |
|
|
288 | (1) |
|
6.2.2 The Origin of Inhomogeneity |
|
|
289 | (1) |
|
6.2.3 The Percolative Transition |
|
|
290 | (1) |
|
6.2.4 Inhomogeneity: Experimental Data |
|
|
291 | (1) |
|
|
292 | (2) |
|
6.3.1 The Highest Energy Scale (T*) |
|
|
292 | (1) |
|
6.3.2 The Diamagnetic Transition (T*c) |
|
|
292 | (1) |
|
6.3.3 The Resistive Transition (Tc) |
|
|
293 | (1) |
|
|
294 | (8) |
|
|
294 | (1) |
|
|
295 | (2) |
|
6.4.3 Transport Properties: The `Giant' Josephson Effect |
|
|
297 | (4) |
|
|
301 | (1) |
|
|
302 | (3) |
|
|
302 | (1) |
|
6.5.2 Granular Superconductors: The Pb + Ag System |
|
|
303 | (2) |
|
6.6 Ordering of Dopants, and the Potential for Room Temperature Superconductivity |
|
|
305 | (2) |
|
|
307 | (2) |
|
|
309 | (54) |
|
7.1 Conventional Superconductors |
|
|
309 | (6) |
|
7.1.1 Ordinary Bulk Materials |
|
|
309 | (1) |
|
7.1.2 A-15 Superconductors |
|
|
309 | (2) |
|
|
311 | (4) |
|
7.2 Hydrides: High Pressure |
|
|
315 | (25) |
|
|
315 | (1) |
|
|
315 | (1) |
|
|
316 | (1) |
|
7.2.4 The Impact of Pressure: New Structures |
|
|
317 | (1) |
|
7.2.5 Hydrides: Main Properties |
|
|
318 | (3) |
|
|
321 | (8) |
|
|
329 | (4) |
|
|
333 | (1) |
|
7.2.9 Hydrogen `Penta-Graphene-Like' Structure |
|
|
334 | (2) |
|
|
336 | (2) |
|
|
338 | (1) |
|
7.2.12 High Tc at Lower Pressure |
|
|
339 | (1) |
|
|
339 | (1) |
|
|
340 | (7) |
|
|
347 | (8) |
|
7.4.1 Ruthenates and the Magnetic Superconductors, Ruthenocuprates |
|
|
347 | (1) |
|
|
348 | (5) |
|
7.4.3 Intercalated Nitrides: Self-Supported Superconductivity |
|
|
353 | (1) |
|
|
354 | (1) |
|
7.5 Topological Superconductors |
|
|
355 | (8) |
|
|
363 | (40) |
|
8.1 Organic Superconductivity |
|
|
363 | (12) |
|
|
363 | (2) |
|
8.1.2 The TMTSF and ET Families: Structure and Properties |
|
|
365 | (3) |
|
8.1.3 Intercalated Materials |
|
|
368 | (1) |
|
|
369 | (1) |
|
|
370 | (5) |
|
8.2 Small-Scale Organic Superconductivity |
|
|
375 | (5) |
|
|
375 | (1) |
|
|
375 | (5) |
|
8.3 Pairing in Nanoclusters, and Nano-Based Superconducting Tunnelling Networks |
|
|
380 | (14) |
|
8.3.1 Clusters, and Shell Structures |
|
|
381 | (3) |
|
|
384 | (6) |
|
8.3.3 The Cluster-Based Tunnelling Network: Macroscopic Superconductivity |
|
|
390 | (2) |
|
8.3.4 Experimental Observation |
|
|
392 | (2) |
|
8.4 Interface Superconductivity |
|
|
394 | (2) |
|
8.5 Room Temperature Superconductivity: Paths, Systems, and Challenges |
|
|
396 | (7) |
|
|
396 | (1) |
|
8.5.2 Promising Directions |
|
|
397 | (5) |
|
|
402 | (1) |
|
|
403 | (26) |
|
|
403 | (1) |
|
9.2 Electronic Structure and Doping |
|
|
404 | (5) |
|
|
404 | (3) |
|
|
407 | (1) |
|
9.2.3 The Double-Exchange Mechanism |
|
|
407 | (1) |
|
9.2.4 Colossal Magnetoresistance |
|
|
408 | (1) |
|
9.3 Percolation Phenomena |
|
|
409 | (5) |
|
9.3.1 Low Doping and the Transition to the Ferromagnetic State at Low Temperatures |
|
|
409 | (1) |
|
9.3.2 The Percolation Threshold |
|
|
410 | (1) |
|
9.3.3 Increase in Temperature and the Percolative Transition |
|
|
411 | (1) |
|
|
412 | (1) |
|
|
413 | (1) |
|
9.4 Main Interactions and the Hamiltonian |
|
|
414 | (2) |
|
9.5 The Ferromagnetic Metallic State |
|
|
416 | (6) |
|
9.5.1 The Two-Band Spectrum |
|
|
416 | (2) |
|
|
418 | (1) |
|
9.5.3 Isotope Substitution |
|
|
419 | (2) |
|
|
421 | (1) |
|
|
422 | (3) |
|
9.6.1 The Parent Compound |
|
|
422 | (1) |
|
9.6.2 Low Doping and Polarons |
|
|
423 | (2) |
|
9.7 The Metallic A-Phase and the Superconductor-Antiferromagnet-Superconductor Josephson Effect |
|
|
425 | (3) |
|
|
425 | (1) |
|
9.7.2 The Josephson Contact with an A-Phase Barrier |
|
|
425 | (3) |
|
9.8 Discussion: Manganites versus Cuprates |
|
|
428 | (1) |
|
10 Superconducting States In Nature |
|
|
429 | (26) |
|
10.1 Pair Correlation in Atomic Nuclei |
|
|
429 | (4) |
|
|
429 | (1) |
|
|
430 | (3) |
|
10.2 Pair Correlation and Astrophysics |
|
|
433 | (1) |
|
10.3 Biologically Active Systems |
|
|
434 | (3) |
|
Appendix A The Dynamic Jahn--Teller Effect |
|
|
437 | (2) |
|
Appendix B Finite Fermi Systems: Quasi-Resonant States |
|
|
439 | (1) |
|
Appendix C The n and a Electronic States: The Benzene Molecule |
|
|
440 | (6) |
|
C.1 The n-Electron System and Its Energy Spectrum |
|
|
441 | (2) |
|
C.2 The Benzene Molecule: n and a States |
|
|
443 | (3) |
|
Appendix D The Multi-Electron Tight Binding Methods GTB and LDA+GTB |
|
|
446 | (6) |
|
|
446 | (1) |
|
|
447 | (1) |
|
D.3 Step II: Exact Diagonalisation |
|
|
447 | (2) |
|
D.4 Step III: Perturbation Theory |
|
|
449 | (3) |
|
Appendix E Methods of Quantum Field Theory |
|
|
452 | (3) |
Bibliography |
|
455 | (38) |
Index |
|
493 | |