|
Part I Observational Overview and General Interpretations |
|
|
|
|
3 | (20) |
|
|
3 | (1) |
|
|
4 | (2) |
|
1.3 Spectral Classification |
|
|
6 | (2) |
|
|
8 | (4) |
|
|
12 | (2) |
|
|
14 | (2) |
|
1.7 Asymmetries and Polarization |
|
|
16 | (1) |
|
1.8 Sites, Environments, and Rates |
|
|
16 | (2) |
|
1.9 Circumstellar Interaction |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (2) |
|
|
23 | (10) |
|
|
23 | (2) |
|
|
25 | (2) |
|
2.3 Hubble-Flow Supernovae |
|
|
27 | (2) |
|
2.4 High-Redshift Supernovae |
|
|
29 | (2) |
|
|
31 | (2) |
|
3 Environments and Rates of Supernovae |
|
|
33 | (14) |
|
|
33 | (1) |
|
3.2 Direct Detection of Progenitors and Companion Stars |
|
|
33 | (3) |
|
3.3 Environments in the Local Universe |
|
|
36 | (2) |
|
3.4 Rates in the Local Universe |
|
|
38 | (2) |
|
|
40 | (1) |
|
3.6 Inferences from Rates About Progenitors of Core-Collapse Supernovae |
|
|
41 | (1) |
|
3.7 Rates Versus Redshift |
|
|
42 | (1) |
|
3.8 The SN Ia Delay-Time Distribution |
|
|
43 | (2) |
|
|
45 | (2) |
|
|
47 | (28) |
|
|
47 | (1) |
|
4.2 Elements of Line Formation in the Photospheric Phase |
|
|
48 | (8) |
|
|
49 | (1) |
|
4.2.2 Resonant-Scattering Line Profile: Qualitative Overview |
|
|
49 | (2) |
|
4.2.3 Resonant-Scattering Line Profile: More Quantitative |
|
|
51 | (3) |
|
4.2.4 Multiple Scattering: Line Blending |
|
|
54 | (2) |
|
4.3 Lines To Be Considered |
|
|
56 | (1) |
|
4.4 Synthetic Spectra for the Photospheric Phase |
|
|
57 | (7) |
|
|
57 | (2) |
|
4.4.2 Elementary Monte Carlo |
|
|
59 | (1) |
|
4.4.3 Detailed Calculations |
|
|
59 | (5) |
|
|
64 | (3) |
|
|
67 | (6) |
|
|
73 | (2) |
|
|
75 | (26) |
|
|
75 | (1) |
|
|
75 | (2) |
|
5.3 Understanding Basic Properties of Supernova Light Curves |
|
|
77 | (4) |
|
|
81 | (11) |
|
5.4.1 Shock Energy: Breakout, Fireball, and Plateau |
|
|
81 | (1) |
|
5.4.2 Radioactive Decay of 56Ni and 56Co |
|
|
82 | (8) |
|
5.4.3 Gamma-Ray Light Curves |
|
|
90 | (1) |
|
5.4.4 Buried Pulsar/Magnetar |
|
|
91 | (1) |
|
5.5 Application to Supernova Types |
|
|
92 | (7) |
|
|
92 | (3) |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
96 | (2) |
|
|
98 | (1) |
|
5.5.6 Light-Curve Extremes |
|
|
98 | (1) |
|
5.6 Detailed Calculations |
|
|
99 | (1) |
|
|
99 | (2) |
|
6 Circumstellar Interaction |
|
|
101 | (14) |
|
|
101 | (1) |
|
6.2 Hydrodynamic Interaction |
|
|
102 | (2) |
|
6.3 Optical, UV, and X-ray Emission from the Shocked Regions |
|
|
104 | (1) |
|
6.4 Optical, UV, and X-ray Emission from the Unshocked Regions |
|
|
105 | (1) |
|
|
105 | (3) |
|
6.6 Dust and Infrared Emission |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
110 | (2) |
|
6.10 Core-Collapse Supernovae |
|
|
112 | (1) |
|
|
112 | (1) |
|
|
113 | (2) |
|
|
115 | (20) |
|
|
115 | (1) |
|
|
116 | (2) |
|
|
116 | (1) |
|
|
117 | (1) |
|
7.3 Evolution of Shell SNRs |
|
|
118 | (1) |
|
|
118 | (1) |
|
7.3.2 Presupernova Shells |
|
|
118 | (1) |
|
|
119 | (14) |
|
|
120 | (3) |
|
7.4.2 SN 1054 and the Crab Nebula |
|
|
123 | (3) |
|
7.4.3 SN 1181 and SNR 3C58 |
|
|
126 | (1) |
|
7.4.4 SN 1572 and the Tycho SNR |
|
|
127 | (2) |
|
7.4.5 SN 1604 and the Kepler SNR |
|
|
129 | (1) |
|
7.4.6 SN 1006 and SNR G327.6+14.6 |
|
|
130 | (1) |
|
7.4.7 SN 185 and SNR RCW 86 |
|
|
131 | (1) |
|
7.4.8 G1.9+0.3: The Youngest Known Galactic SNR |
|
|
132 | (1) |
|
7.4.9 SN 1885A and Its SNR in the Andromeda Galaxy |
|
|
133 | (1) |
|
|
133 | (2) |
|
8 Evolution to Catastrophe |
|
|
135 | (38) |
|
|
135 | (4) |
|
|
139 | (3) |
|
8.3 Red Giants and Red Supergiants |
|
|
142 | (6) |
|
|
143 | (2) |
|
8.3.2 AGB Stars, SAGB Stars, Thermal Pulses |
|
|
145 | (2) |
|
|
147 | (1) |
|
|
148 | (4) |
|
8.4.1 Radiation-Driven Mass Loss in Massive Stars |
|
|
149 | (1) |
|
|
150 | (2) |
|
8.4.3 Mass Loss by Luminous Blue Variables |
|
|
152 | (1) |
|
8.5 Presupernova Evolution |
|
|
152 | (7) |
|
|
152 | (1) |
|
8.5.2 Evolution to Degenerate Carbon Ignition |
|
|
153 | (1) |
|
8.5.3 Degenerate Oxygen-Neon-Magnesium Cores |
|
|
154 | (1) |
|
8.5.4 Off-center Oxygen and Neon Ignition |
|
|
155 | (1) |
|
8.5.5 Iron-Core Evolution |
|
|
156 | (3) |
|
|
159 | (3) |
|
8.7 Evolution with Rotation |
|
|
162 | (2) |
|
8.8 Binary-Star Evolution |
|
|
164 | (4) |
|
|
168 | (5) |
|
Part II Massive-Star Supernovae |
|
|
|
|
173 | (38) |
|
|
173 | (1) |
|
9.2 History of the Collapse Problem |
|
|
174 | (4) |
|
|
178 | (7) |
|
|
178 | (2) |
|
9.3.2 The Equation of State |
|
|
180 | (1) |
|
|
181 | (2) |
|
|
183 | (2) |
|
|
185 | (13) |
|
9.4.1 Initial Iron-Core Collapse |
|
|
185 | (3) |
|
9.4.2 Electron Capture and Accretion-Induced Collapse |
|
|
188 | (1) |
|
9.4.3 Post-Bounce Dynamics |
|
|
189 | (1) |
|
9.4.4 Standing Shock Phase |
|
|
190 | (2) |
|
|
192 | (2) |
|
9.4.6 Fluid Instabilities |
|
|
194 | (2) |
|
9.4.7 The Standing Accretion Shock Instability: SASI |
|
|
196 | (2) |
|
9.5 Rotation and Magnetic Fields |
|
|
198 | (8) |
|
9.5.1 Basic Magnetorotational Physics: Length and Time Scales |
|
|
199 | (2) |
|
9.5.2 Magnetic-Field Compression and Wrapping |
|
|
201 | (1) |
|
9.5.3 The Magnetorotational Instability: MRI |
|
|
202 | (3) |
|
9.5.4 Other MHD Processes |
|
|
205 | (1) |
|
9.5.5 Non-Axisymmetric Instabilities: NAXI |
|
|
205 | (1) |
|
|
206 | (2) |
|
9.7 Quark and Strange Stars |
|
|
208 | (1) |
|
|
208 | (3) |
|
10 Pair-Instability Supernova Models |
|
|
211 | (8) |
|
|
211 | (1) |
|
10.2 Pre-Explosion Evolution |
|
|
211 | (2) |
|
10.3 Dynamics of Pair Instability |
|
|
213 | (1) |
|
|
214 | (1) |
|
10.5 Predicted Observational Properties |
|
|
214 | (2) |
|
10.6 Upper Limit to PISN: Collapse to Black Holes |
|
|
216 | (1) |
|
10.7 Pulsational Pair Instability: PPISN |
|
|
217 | (1) |
|
|
218 | (1) |
|
|
219 | (26) |
|
|
219 | (1) |
|
11.2 The Progenitor Star and the Triple-Ring System |
|
|
219 | (4) |
|
11.3 Neutrinos and the Compact Remnant |
|
|
223 | (3) |
|
|
226 | (11) |
|
11.4.1 Breakout and Fireball |
|
|
226 | (1) |
|
|
227 | (3) |
|
11.4.3 Molecules and Dust |
|
|
230 | (1) |
|
11.4.4 Asymmetries and Mixing |
|
|
231 | (6) |
|
|
237 | (3) |
|
11.6 Circumstellar Interaction |
|
|
240 | (2) |
|
11.7 Related Progenitor Stars and Supernovae |
|
|
242 | (1) |
|
|
243 | (2) |
|
|
245 | (22) |
|
|
245 | (1) |
|
12.2 Case Study: SN 1999em |
|
|
246 | (3) |
|
12.3 Expected Progenitor Structures |
|
|
249 | (2) |
|
12.4 Breakout, Fireball, and Rise-Time |
|
|
251 | (1) |
|
|
252 | (6) |
|
|
253 | (1) |
|
|
254 | (2) |
|
12.5.3 Continuity and Correlations |
|
|
256 | (1) |
|
12.5.4 Estimating Masses and the Red Supergiant Problem |
|
|
256 | (2) |
|
|
258 | (2) |
|
12.7 Circumstellar Interaction |
|
|
260 | (1) |
|
|
261 | (1) |
|
12.9 Polarization and Asymmetry |
|
|
262 | (2) |
|
|
264 | (3) |
|
|
267 | (14) |
|
|
267 | (1) |
|
|
268 | (7) |
|
|
268 | (4) |
|
|
272 | (3) |
|
13.3 Synthesis of SN IIL Characteristics |
|
|
275 | (4) |
|
|
279 | (2) |
|
|
281 | (38) |
|
|
281 | (1) |
|
|
282 | (11) |
|
|
282 | (3) |
|
|
285 | (4) |
|
|
289 | (4) |
|
14.3 Synthesis of SN IIn Characteristics |
|
|
293 | (14) |
|
14.3.1 Light-Curve Subtypes |
|
|
293 | (5) |
|
|
298 | (2) |
|
14.3.3 Mass Loss and Circumstellar Medium |
|
|
300 | (2) |
|
14.3.4 Infrared Observations and Dust |
|
|
302 | (1) |
|
14.3.5 Polarization and Asymmetry |
|
|
302 | (5) |
|
|
307 | (1) |
|
|
307 | (6) |
|
|
313 | (3) |
|
|
316 | (3) |
|
|
319 | (26) |
|
|
319 | (1) |
|
15.2 Case Study: SN 1993J |
|
|
320 | (13) |
|
|
320 | (2) |
|
|
322 | (1) |
|
15.2.3 Polarization and Asymmetry |
|
|
323 | (3) |
|
15.2.4 Circumstellar Interaction |
|
|
326 | (1) |
|
15.2.5 Evolutionary Models |
|
|
327 | (1) |
|
15.2.6 Model Light Curves |
|
|
328 | (1) |
|
15.2.7 Models of Photospheric Spectra |
|
|
329 | (3) |
|
15.2.8 Models of Nebular Spectra |
|
|
332 | (1) |
|
15.3 Synthesis of SN IIb Characteristics |
|
|
333 | (5) |
|
|
333 | (1) |
|
|
333 | (1) |
|
|
334 | (2) |
|
15.3.4 Circumstellar Interaction |
|
|
336 | (1) |
|
15.3.5 Polarization and Asymmetry |
|
|
336 | (2) |
|
|
338 | (5) |
|
15.4.1 Evolutionary Models |
|
|
338 | (3) |
|
15.4.2 Model Light Curves |
|
|
341 | (1) |
|
15.4.3 Models of Photospheric Spectra |
|
|
342 | (1) |
|
15.4.4 Models of Nebular Spectra |
|
|
343 | (1) |
|
|
343 | (2) |
|
|
345 | (34) |
|
|
345 | (1) |
|
|
346 | (6) |
|
|
346 | (4) |
|
|
350 | (2) |
|
16.3 Synthesis of SN Ib Characteristics |
|
|
352 | (14) |
|
|
353 | (3) |
|
|
356 | (4) |
|
16.3.3 Polarization and Asymmetry |
|
|
360 | (5) |
|
16.3.4 Circumstellar Interaction |
|
|
365 | (1) |
|
|
366 | (4) |
|
16.4.1 Evolutionary Models |
|
|
366 | (1) |
|
16.4.2 Model Light Curves |
|
|
367 | (1) |
|
16.4.3 Models of Photospheric Spectra |
|
|
368 | (2) |
|
16.4.4 Models of Nebular-Phase Spectra |
|
|
370 | (1) |
|
|
370 | (5) |
|
16.5.1 Case Study: SN 2006jc |
|
|
371 | (2) |
|
16.5.2 Synthesis of SN Ibn Characteristics |
|
|
373 | (2) |
|
|
375 | (4) |
|
|
379 | (34) |
|
|
379 | (1) |
|
17.2 Case Study: SN 19941 |
|
|
380 | (5) |
|
17.3 Synthesis of SN Ic Characteristics |
|
|
385 | (8) |
|
|
385 | (3) |
|
|
388 | (3) |
|
17.3.3 Polarization and Asymmetry |
|
|
391 | (1) |
|
17.3.4 Circumstellar Interaction |
|
|
392 | (1) |
|
|
393 | (9) |
|
17.4.1 Case Study: SN 2002ap |
|
|
393 | (4) |
|
17.4.2 Synthesis of Properties of SN Ic-bl |
|
|
397 | (2) |
|
17.4.3 The Connection Between SN Ic-bl and Gamma-Ray Bursts |
|
|
399 | (3) |
|
17.5 Models of SN Ic and SN Ic-bl |
|
|
402 | (9) |
|
17.5.1 Evolutionary Models |
|
|
403 | (1) |
|
17.5.2 Models of Light Curves |
|
|
404 | (4) |
|
17.5.3 Models of Photospheric Spectra |
|
|
408 | (2) |
|
17.5.4 Models of Nebular Spectra |
|
|
410 | (1) |
|
|
411 | (2) |
|
18 Superluminous Supernovae |
|
|
413 | (24) |
|
|
413 | (3) |
|
|
416 | (6) |
|
18.2.1 Case Study: SN 2006gy |
|
|
416 | (3) |
|
18.2.2 Synthesis of SLSN-II Characteristics |
|
|
419 | (3) |
|
|
422 | (8) |
|
18.3.1 Case Study: SN 2010gx |
|
|
422 | (1) |
|
18.3.2 Synthesis of SLSN-I Characteristics |
|
|
423 | (7) |
|
|
430 | (2) |
|
|
432 | (5) |
|
Part III Type Ia Supernovae |
|
|
|
19 Degenerate Carbon Burning |
|
|
437 | (46) |
|
|
437 | (1) |
|
19.2 Single Degenerate: The Smoldering Phase |
|
|
437 | (3) |
|
19.3 Convective Urea Process |
|
|
440 | (1) |
|
19.4 Dynamical Degenerate Carbon Burning |
|
|
441 | (7) |
|
19.4.1 General Considerations |
|
|
441 | (2) |
|
19.4.2 The Basics of Supersonic and Subsonic Combustion |
|
|
443 | (5) |
|
19.5 Astrophysical Deflagration: Subsonic Burning and Combustion |
|
|
448 | (5) |
|
|
449 | (3) |
|
19.5.2 Rayleigh-Taylor Instability |
|
|
452 | (1) |
|
19.6 Interaction of Buoyancy, Turbulence and Flames |
|
|
453 | (9) |
|
19.6.1 Landau-Darrieus Instability |
|
|
453 | (2) |
|
19.6.2 Buoyancy-Driven Flames |
|
|
455 | (1) |
|
|
455 | (3) |
|
|
458 | (2) |
|
19.6.5 Distributed Flames? |
|
|
460 | (2) |
|
|
462 | (1) |
|
19.8 Early Runaway: Hot Spots and Bubbles |
|
|
463 | (3) |
|
19.9 Astrophysical Detonation: Supersonic Burning |
|
|
466 | (1) |
|
19.10 Detonation Instability |
|
|
467 | (5) |
|
19.11 Deflagration-to-Detonation Transition |
|
|
472 | (8) |
|
19.11.1 The Zel'dovich Gradient Mechanism |
|
|
473 | (2) |
|
19.11.2 Turbulent Flame-Brush Instability |
|
|
475 | (3) |
|
19.11.3 DDT Due To Turbulent Flame-Brush Instability |
|
|
478 | (2) |
|
|
480 | (3) |
|
20 Observational Properties |
|
|
483 | (36) |
|
|
483 | (1) |
|
|
484 | (12) |
|
|
484 | (5) |
|
|
489 | (7) |
|
|
496 | (5) |
|
20.4 Diversity and Correlations |
|
|
501 | (6) |
|
20.5 Multiparameter Subclassification |
|
|
507 | (4) |
|
20.6 Colors and Extinction |
|
|
511 | (1) |
|
20.7 Substantially Super-Chandrasekhar SN Ia |
|
|
512 | (1) |
|
|
513 | (1) |
|
20.9 Correlations Between Properties of SN Ia and Host Galaxies |
|
|
514 | (2) |
|
20.10 Variations with Redshift |
|
|
516 | (1) |
|
|
516 | (3) |
|
|
519 | (36) |
|
|
519 | (4) |
|
|
523 | (13) |
|
21.2.1 Canonical SD Model: C/O White Dwarfs Accreting to the Chandrasekhar Mass |
|
|
524 | (4) |
|
21.2.2 Canonical SD Model: Binary Evolution and Population Synthesis |
|
|
528 | (3) |
|
21.2.3 Distribution Predictions |
|
|
531 | (2) |
|
|
533 | (1) |
|
21.2.5 Super-Chandrasekhar Single Degenerates |
|
|
534 | (1) |
|
21.2.6 Sub-Chandrasekhar Single Degenerates |
|
|
535 | (1) |
|
|
536 | (5) |
|
21.3.1 Canonical Super-Chandrasekhar DD Model |
|
|
536 | (1) |
|
21.3.2 Canonical DD Model: Binary Evolution and Population Synthesis |
|
|
537 | (2) |
|
21.3.3 Noncanonical and Sub-Chandrasekhar Possibilities |
|
|
539 | (2) |
|
|
541 | (1) |
|
21.5 Observed Candidate Progenitor Systems |
|
|
542 | (2) |
|
|
542 | (1) |
|
21.5.2 Other Possibilities |
|
|
543 | (1) |
|
21.6 Other Evidence Constraining Progenitor Systems |
|
|
544 | (8) |
|
21.6.1 Archival Observations at Supernova Sites |
|
|
544 | (1) |
|
21.6.2 Statistics of Supersoft X-Ray Sources |
|
|
545 | (1) |
|
21.6.3 Breakout and Interaction with an Accretion Disk |
|
|
546 | (1) |
|
21.6.4 Interaction with a Donor Star |
|
|
546 | (2) |
|
21.6.5 Circumstellar Interaction |
|
|
548 | (2) |
|
21.6.6 Supernova Remnants |
|
|
550 | (1) |
|
21.6.7 White Dwarf Populations |
|
|
551 | (1) |
|
21.6.8 Abundance Constraints |
|
|
552 | (1) |
|
|
552 | (3) |
|
|
555 | (26) |
|
|
555 | (2) |
|
|
557 | (2) |
|
22.3 Single-Degenerate Chandrasekhar-Mass Models |
|
|
559 | (16) |
|
22.3.1 Central Detonation |
|
|
559 | (1) |
|
|
559 | (1) |
|
|
560 | (1) |
|
22.3.4 Delayed Detonations |
|
|
561 | (8) |
|
22.3.5 Pulsation-Driven Detonations |
|
|
569 | (1) |
|
22.3.6 Gravitationally-Confined Detonations |
|
|
570 | (2) |
|
22.3.7 Single-Degenerate Super-Chandrasekhar Models |
|
|
572 | (1) |
|
22.3.8 Single-Degenerate Sub-Chandrasekhar Models |
|
|
573 | (2) |
|
22.4 Double-Degenerate Models |
|
|
575 | (3) |
|
22.4.1 The Canonical Double-Degenerate Model |
|
|
575 | (1) |
|
22.4.2 Other Double-Degenerate Possibilities |
|
|
576 | (2) |
|
|
578 | (3) |
|
|
581 | (16) |
|
|
581 | (1) |
|
23.2 SN 2002ic-Likes: SN Ia-CSM |
|
|
581 | (4) |
|
23.3 SN 2002cx-Likes: SN Iax |
|
|
585 | (5) |
|
23.4 SN 2002bj-Likes: SN Ia? |
|
|
590 | (2) |
|
23.5 SN 2005E-Likes: Calcium-Rich Transients |
|
|
592 | (2) |
|
|
594 | (3) |
|
Part IV Consequences, Applications, and Summary |
|
|
|
24 Consequences of Supernovae |
|
|
597 | (28) |
|
|
597 | (1) |
|
|
597 | (7) |
|
|
598 | (3) |
|
|
601 | (3) |
|
24.3 Surviving Companion Stars |
|
|
604 | (1) |
|
24.4 Neutrinos and Gravitational Waves |
|
|
605 | (2) |
|
|
607 | (5) |
|
|
612 | (1) |
|
24.7 Mechanical and Radiative Feedback |
|
|
613 | (4) |
|
|
614 | (2) |
|
|
616 | (1) |
|
|
617 | (3) |
|
|
618 | (1) |
|
24.8.2 Damped Lyman-α Clouds |
|
|
619 | (1) |
|
|
620 | (1) |
|
|
621 | (1) |
|
24.11 Effects on the Solar System? |
|
|
622 | (1) |
|
|
622 | (2) |
|
|
624 | (1) |
|
25 Applications of Supernovae to Other Areas of Astrophysics and Physics |
|
|
625 | (12) |
|
|
625 | (1) |
|
25.2 Distances to Type Ia Supernovae |
|
|
625 | (4) |
|
25.2.1 Accelerating Cosmic Expansion and Dark Energy |
|
|
625 | (2) |
|
25.2.2 Flows, Peculiar Velocities, and Anisotropy |
|
|
627 | (1) |
|
|
628 | (1) |
|
25.2.4 The Hubble Constant |
|
|
628 | (1) |
|
25.3 Distances to Core-Collapse Supernovae |
|
|
629 | (1) |
|
|
630 | (4) |
|
25.4.1 Interstellar Medium |
|
|
630 | (2) |
|
25.4.2 Supernovae from the First Stars |
|
|
632 | (1) |
|
|
632 | (2) |
|
|
634 | (1) |
|
25.4.5 Finding Dwarf Galaxies and Intracluster Populations |
|
|
634 | (1) |
|
|
634 | (1) |
|
25.5.1 Constraints from Core Collapse |
|
|
634 | (1) |
|
25.5.2 Constraints from SN Ia |
|
|
635 | (1) |
|
|
635 | (2) |
|
|
637 | (6) |
|
|
637 | (1) |
|
26.2 Massive-Star Supernovae |
|
|
637 | (1) |
|
|
638 | (1) |
|
|
639 | (3) |
|
|
639 | (2) |
|
|
641 | (1) |
|
|
642 | (1) |
Appendix: Abbreviations |
|
643 | (4) |
References |
|
647 | (52) |
Index |
|
699 | |