Muutke küpsiste eelistusi

E-raamat: Supervised Learning with Python: Concepts and Practical Implementation Using Python

  • Formaat: PDF+DRM
  • Ilmumisaeg: 07-Oct-2020
  • Kirjastus: APress
  • Keel: eng
  • ISBN-13: 9781484261569
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 07-Oct-2020
  • Kirjastus: APress
  • Keel: eng
  • ISBN-13: 9781484261569
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Gain a thorough understanding of supervised learning algorithms by developing use cases with Python. You will study supervised learning concepts, Python code, datasets, best practices, resolution of common issues and pitfalls, and practical knowledge of implementing algorithms for structured as well as text and images datasets.

Youll start with an introduction to machine learning, highlighting the differences between supervised, semi-supervised and unsupervised learning. In the following chapters youll study regression and classification problems, mathematics behind them, algorithms like Linear Regression, Logistic Regression, Decision Tree, KNN, Naïve Bayes, and advanced algorithms like Random Forest, SVM, Gradient Boosting and Neural Networks. Python implementation is provided for all the algorithms. Youll conclude with an end-to-end model development process including deployment and maintenance of the model.After reading Supervised Learning with Python youll have a broad understanding of supervised learning and its practical implementation, and be able to run the code and extend it in an innovative manner. What You'll Learn

Review the fundamental building blocks and concepts of supervised learning using Python Develop supervised learning solutions for structured data as well as text and images  Solve issues around overfitting, feature engineering, data cleansing, and cross-validation for building best fit models Understand the end-to-end model cycle from business problem definition to model deployment and model maintenance  Avoid the common pitfalls and adhere to best practices while creating a supervised learning model using Python

Who This Book Is For Data scientists or data analysts interested in best practices and standards for supervised learning, and using classification algorithms and regression techniques to develop predictive models.
About the Author xi
About the Technical Reviewer xiii
Foreword xv
Acknowledgments xvii
Introduction xix
Chapter 1 Introduction to Supervised Learning
1(46)
What Is ML?
2(8)
Relationship Between Data Analysis, Data Mining, ML, and Al
3(2)
Data, Data Types, and Data Sources
5(5)
How ML Differs from Software Engineering
10(5)
ML Projects
12(3)
Statistical and Mathematical Concepts for ML
15(10)
Supervised Learning Algorithms
25(9)
Regression vs. Classification Problems
28(2)
Steps in a Supervised Learning Algorithm
30(4)
Unsupervised Learning Algorithms
34(3)
Cluster Analysis
35(1)
PCA
36(1)
Semi-supervised Learning Algorithms
37(1)
Technical Stack
37(2)
ML's Popularity
39(2)
Use Cases of ML
41(3)
Summary
44(3)
Chapter 2 Supervised Learning for Regression Analysis
47(70)
Technical Toolkit Required
48(1)
Regression analysis and Use Cases
49(2)
What Is Linear Regression
51(8)
Assumptions of Linear Regression
56(3)
Measuring the Efficacy of Regression Problem
59(25)
Example 1 Creating a Simple Linear Regression
68(3)
Example 2 Simple Linear Regression for Housing Dataset
71(7)
Example 3 Multiple Linear Regression for Housing Dataset
78(6)
Nonlinear Regression Analysis
84(4)
Identifying a Nonlinear Relationship
88(3)
Assumptions for a Nonlinear Regression
89(2)
Challenges with a Regression Model
91(3)
Tree-Based Methods for Regression
94(4)
Case study: Petrol consumption using Decision tree
98(5)
Ensemble Methods for Regression
103(3)
Case study: Petrol consumption using Random Forest
106(4)
Feature Selection Using Tree-Based Methods
110(3)
Summary
113(4)
Chapter 3 Supervised Learning for Classification Problems
117(74)
Technical Toolkit Required
118(1)
Hypothesis Testing and p-Value
118(3)
Classification Algorithms
121(8)
Logistic Regression for Classification
124(5)
Assessing the Accuracy of the Solution
129(7)
Case Study: Credit Risk
136(14)
Additional Notes
149(1)
Naive Bayes for Classification
150(4)
Case Study: Income Prediction on Census Data
154(9)
K-Nearest Neighbors for Classification
163(6)
Case Study: k-Nearest Neighbor
169(9)
The Dataset
170(1)
Business Objective
170(8)
Tree-Based Algorithms for Classification
178(4)
Types of Decision Tree Algorithms
182(6)
Summary
188(3)
Chapter 4 Advanced Algorithms for Supervised Learning
191(100)
Technical Toolkit Required
192(1)
Boosting Algorithms
193(15)
Using Gradient Boosting Algorithm
198(10)
SVM
208(13)
SVM in 2-D Space
210(3)
KSVM
213(2)
Case Study Using SVM
215(6)
Supervised Algorithms for Unstructured Data
221(1)
Text Data
222(21)
Use Cases of Text Data
223(3)
Challenges with Text Data
226(2)
Text Analytics Modeling Process
228(2)
Text Data Extraction and Management
230(3)
Preprocessing of Text Data
233(3)
Extracting Features from Text Data
236(7)
Case study: Customer complaints analysis using NLP
243(5)
Word Embeddings
246(2)
Case study: Customer complaints analysis using word embeddings
248(4)
Image Data
252(9)
Use Cases of Image Data
253(3)
Challenges with Image Data
256(2)
Image Data Management Process
258(2)
Image Data Modeling Process
260(1)
Fundamentals of Deep Learning
261(15)
Artificial Neural Networks
261(4)
Activation Functions
265(3)
Loss Function in a Neural Network
268(1)
Optimization in a Neural Network
268(4)
Neural Network Training Process
272(4)
Case Study 1: Create a Classification Model on Structured Data
276(5)
Case Study 2: Image Classification Model
281(6)
Summary
287(4)
Chapter 5 End-to-End Model Development
291(76)
Technical Toolkit Required
292(1)
ML Model Development
292(2)
Step 1 Define the Business Problem
294(2)
Step 2 Data Discovery Phase
296(5)
Step 3 Data Cleaning and Preparation
301(15)
Duplicates in the Dataset
302(2)
Categorical Variable Treatment in Dataset
304(3)
Missing Values Present in the Dataset
307(9)
Imbalance in the Dataset
316(5)
Outliers in the Dataset
321(4)
Other Common Problems in the Dataset
325(3)
Step 4 EDA
328(7)
Step 5 ML Model Building
335(16)
Train/Test Split of Data
336(6)
Finding the Best Threshold for Classification Algorithms
342(1)
Overfitting vs. Underfitting Problem
343(7)
Key Stakeholder Discussion and Iterations
350(1)
Presenting the Final Model
350(1)
Step 6 Deployment of the Model
351(12)
Step 7 Documentation
363(1)
Step 8 Model Refresh and Maintenance
363(1)
Summary
364(3)
Index 367
Vaibhav Verdhan has 12+ years of experience in Data Science, Machine Learning and Artificial Intelligence. An MBA with engineering background, he is a hands-on technical expert with acumen to assimilate and analyse data. He has led multiple engagements in ML and AI across geographies and across retail, telecom, manufacturing, energy and utilities domains. Currently he resides in Ireland with his family and is working as a Principal Data Scientist.