Muutke küpsiste eelistusi

E-raamat: Surface-Knots in 4-Space: An Introduction

Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 135,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This introductory volume provides the basics of surface-knots and related topics, not only for researchers in these areas but also for graduate students and researchers who are not familiar with the field.
Knot theory is one of the most active research fields in modern mathematics. Knots and links are closed curves (one-dimensional manifolds) in Euclidean 3-space, and they are related to braids and 3-manifolds. These notions are generalized into higher dimensions. Surface-knots or surface-links are closed surfaces (two-dimensional manifolds) in Euclidean 4-space, which are related to two-dimensional braids and 4-manifolds. Surface-knot theory treats not only closed surfaces but also surfaces with boundaries in 4-manifolds. For example, knot concordance and knot cobordism, which are also important objects in knot theory, are surfaces in the product space of the 3-sphere and the interval.
Included in this book are basics of surface-knots and the related topics of classical knots, the motion picture method, surface diagrams, handle surgeries, ribbon surface-knots, spinning construction, knot concordance and 4-genus, quandles and their homology theory, and two-dimensional braids.

Arvustused

Kamada provides a discussion of a great deal of important machinery and current approaches to both knot theory in the more familiar and prosaic sense as well as the more exotic surface-knot theory, the books main focus. is well-written, theorems are plentiful and proven, there are a huge number of diagrams and pictures there are lots of examples, and there are even exercises. This book indeed looks like a good place to learn about surface knots in 4-space. (Michael Berg, MAA Reviews, December, 2017)

1 Surface-Knots
1(14)
1.1 Preliminaries
1(1)
1.2 Surface-Knots
2(7)
1.3 Orientations of Surface-Knots and the Ambient Space
9(1)
1.4 Non-orientable Surface-Knots
9(2)
1.5 Surface-Knots in the 4-Sphere
11(1)
1.6 PL Surface-Knots
11(4)
2 Knots
15(24)
2.1 Knots and Diagrams
15(7)
2.2 Seifert Surfaces
22(2)
2.3 Meridians and Longitudes
24(3)
2.4 Band Surgeries and Connected Sums
27(2)
2.5 Knot Groups
29(2)
2.6 Seifert Matrices
31(1)
2.7 Skein Relations and Polynomial Invariants
32(2)
2.8 2-Bridge Knots, Torus Knots, Satellite Knots
34(5)
3 Motion Pictures
39(36)
3.1 Motion Pictures
39(3)
3.2 Normal Forms of Surface-Knots
42(4)
3.3 Trivial Disk Systems
46(6)
3.4 Link Transformation Sequences
52(5)
3.5 Links with Bands
57(3)
3.6 Ch-Diagrams
60(5)
3.7 Normal Euler Number
65(4)
3.8 Knot Groups and Elementary Ideals
69(6)
4 Surface Diagrams
75(14)
4.1 Surface Diagrams
75(4)
4.2 Roseman Moves
79(2)
4.3 Computation of the Surface-Knot Group from a Diagram
81(3)
4.4 Diagrams and Normal Euler Numbers
84(2)
4.5 The Triple Point Number and the Sheet Number
86(1)
4.6 The Triple Linking Number
87(2)
5 Handle Surgery and Ribbon Surface-Knots
89(16)
5.1 1-Handles
89(6)
5.2 Classifying 1-Handles
95(3)
5.3 2-Handles
98(1)
5.4 Handle Sum and Connected Sum
99(1)
5.5 Ribbon Knots
100(1)
5.6 Ribbon Surface-Knots
101(2)
5.7 Unknotting Surface-Links by 1-Handle Surgery
103(2)
6 Spinning Construction
105(10)
6.1 Spinning Construction
105(2)
6.2 Deform-Spinning 1
107(3)
6.3 Deform-Spinning 2
110(2)
6.4 Spinning Construction for P2-Knots
112(1)
6.5 Meridians of P2-Knots
113(2)
7 Knot Concordance
115(10)
7.1 Slice Knots
115(1)
7.2 Knot Concordance
116(2)
7.3 Concordance and Cobordism on Links
118(1)
7.4 The 4-Genus
119(6)
8 Quandles
125(32)
8.1 Fox's Coloring
125(3)
8.2 Keis
128(2)
8.3 Quandles
130(5)
8.4 Quandle Colorings
135(4)
8.5 Fenn and Rourke's Notation
139(3)
8.6 Presentations of a Rack and a Quandle
142(4)
8.7 Presentations of a Rack and a Quandle, 2
146(1)
8.8 Associated Groups of Quandles
147(4)
8.9 Knot Quandles
151(6)
9 Quandle Homology Groups and Invariants
157(16)
9.1 Quandle Homology Groups
157(1)
9.2 Quandle Cocycle Invariants of Knots
158(3)
9.3 Quandle Cocycle Invariants of Surface-Knots
161(3)
9.4 Quandle Cocycle Invariants with Region Colorings
164(6)
9.5 Symmetric Quandles
170(3)
10 2-Dimensional Braids
173(24)
10.1 Braids and Knots
173(3)
10.2 2-Dimensional Braids
176(2)
10.3 Motion Pictures
178(2)
10.4 Monodromies
180(4)
10.5 Chart Descriptions
184(7)
10.6 Braid Presentation of Surface-Links
191(6)
Epilogue 197(2)
References 199(8)
Index 207