Muutke küpsiste eelistusi

E-raamat: Survival Analysis: A New Guide for Social Scientists

(University of Essex)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 21,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Quantitative social scientists use survival analysis to understand the forces that determine the duration of events. This Element provides a guideline to new techniques and models in survival analysis, particularly in three areas: non-proportional covariate effects, competing risks, and multi-state models. It also revisits models for repeated events. The Element promotes multi-state models as a unified framework for survival analysis and highlights the role of general transition probabilities as key quantities of interest that complement traditional hazard analysis. These quantities focus on the long term probabilities that units will occupy particular states conditional on their current state, and they are central in the design and implementation of policy interventions.

Quantitative social scientists use survival analysis to understand the forces that determine the duration of events. This Element provides a guideline to new techniques and models in survival analysis, particularly in three areas: non-proportional covariate effects, competing risks, and multi-state models.

Muu info

New techniques in survival analysis and event history, including non-proportional covariates, competing risks, and multi-state models.
1. Introduction;
2. Non-proportional Covariates;
3. Repeated Events;
4. Competing Risks;
5. Multi-state Models;
6. Conclusion.