Muutke küpsiste eelistusi

E-raamat: Sustainable Slope Stabilisation using Recycled Plastic Pins

(Arias Geoprofessionals, Inc., San Antonio, Texas, USA), (Jackson State University, Minnesota, USA), (University of Texas at Arlington, USA)
  • Formaat: 252 pages
  • Ilmumisaeg: 14-Jun-2017
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351796316
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 252 pages
  • Ilmumisaeg: 14-Jun-2017
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351796316
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Landslides and slope failure are common in the US and rest of the world. The landslides cause significant damage to infrastructure and millions of dollars are required each year to fix the slope. A sustainable and cost-effective option to stabilize the slope can have significant benefits, as it will reduce the cost of maintenance and when using recycled pins, it may help the environment at the same time. The recycled plastic pins are made from recycled plastic bottles and other plastic waste. Several demonstration projects already proved the effectiveness of RPP as an alternative option to fix slope failure, with a maximum failure depth of 7-8 ft. In this book, every detail of the slope stabilization technique using recycled plastic pins, including the design techniques and several case studies, are included. This will help to explain the basics of this important technique and will be used as reference to design the slope stabilization scheme using recycled plastic pins.

Preface ix
About the authors xiii
1 Introduction
1(6)
2 Slope failure and stabilisation methods
7(28)
2.1 Slope failure
7(2)
2.2 Shallow slope failure
9(1)
2.3 Variation of shear strength of highly plastic clay soil
10(8)
2.4 Effect of rainfall on slope stability
18(6)
2.5 Methods of repair of shallow slope failures
24(11)
2.5.1 Slope rebuilding
24(1)
2.5.2 Pipe piles and wood lagging
24(1)
2.5.3 Geosynthetic/geogrid repair
25(1)
2.5.4 Soil-cement repair
26(1)
2.5.5 Repair with launched soil nails
26(1)
2.5.6 Earth anchors
27(1)
2.5.7 Geofoam
28(1)
2.5.8 Wick drains
29(1)
2.5.9 Retaining wall
29(1)
2.5.9.1 Low masonry or concrete walls
30(1)
2.5.9.2 Gabion walls
30(2)
2.5.9.3 Shallow mechanically stabilised earth walls
32(1)
2.5.10 Pin piles (micropiles)
32(1)
2.5.11 Slender piles
33(1)
2.5.12 Plate piles
33(1)
2.5.13 Recycled plastic pins
34(1)
3 Generation and recycling of plastics
35(8)
3.1 Introduction
35(1)
3.2 Generation of plastic waste
35(2)
3.2.1 Global scene
35(2)
3.2.2 US perspective
37(1)
3.3 Management of plastic waste
37(4)
3.3.1 Global scene
37(2)
3.3.2 US perspective
39(1)
3.3.3 Potential benefits of recycling plastic waste
40(1)
3.4 Use of recycled plastics in different applications
41(1)
3.5 Use of recycled plastic for manufacture of recycled plastic pins
42(1)
4 Recycled plastic pins
43(18)
4.1 Introduction
43(1)
4.2 Manufacturing process of RPPs
43(1)
4.3 Engineering properties of RPPs
44(10)
4.3.1 Compressive and tensile strength
45(1)
4.3.2 Flexural strength
46(1)
4.3.3 Effect of weathering on long-term properties
47(5)
4.3.4 Creep of RPPs
52(1)
4.3.4.1 Creep of RPPs in slope stabilisation
53(1)
4.4 Effect of environmental conditions
54(7)
5 Design methods
61(24)
5.1 Design methods
61(1)
5.2 Limit state design method
62(2)
5.3 Performance-based design approach
64(3)
5.3.1 Limit failure of soil adjacent to RPPs
64(1)
5.3.2 Limit resistance of RPPs
65(1)
5.3.2.1 Limit horizontal displacement of RPPs
65(1)
5.3.2.2 Limit maximum flexure for prolonged creep life
66(1)
5.4 Determination of limit soil pressure
67(4)
5.4.1 Calculation of limit soil pressure
67(1)
5.4.2 Calculation of limit soil resistance
68(3)
5.5 Limit horizontal displacement and maximum flexure of RPPs
71(4)
5.6 Finalising the design chart
75(1)
5.7 Calculation of factor of safety
76(5)
5.7.1 Approach 1: conventional method of slices
76(2)
5.7.1.1 Design steps for approach 1
78(1)
5.7.2 Approach 2: infinite slope
78(3)
5.7.2.1 Design steps for approach 2
81(1)
5.8 Design recommendations
81(4)
5.8.1 Extent of reinforcement zone
81(1)
5.8.2 Material selection
81(2)
5.8.3 Selection of RPP spacing
83(1)
5.8.4 Minimum RPP length and RPP sections
83(1)
5.8.5 Recommendations on design method
83(2)
6 Construction methods
85(12)
6.1 Early development of construction techniques
85(1)
6.2 Types of equipment and driving tools for field installation
86(4)
6.2.1 Davey Kent DK 100B drilling rig
86(1)
6.2.2 Klemm 802 drill rig with KD 1011 percussion head drifter
87(1)
6.2.3 Deere 200D with FRD F22 hydraulic hammer
88(1)
6.2.4 Caterpillar CAT 320D LRR with CAT H130S hydraulic hammer
89(1)
6.3 Field installation rate
90(2)
6.4 Potential challenges of RPP installation
92(1)
6.4.1 Slope steepness
92(1)
6.4.2 Skilled labour
92(1)
6.4.3 Connection between the hammer and pile head
93(1)
6.5 Special installation techniques in adverse situations
93(4)
7 Case studies
97(58)
7.1 US highway 287 slope in Midlothian, Texas
97(19)
7.1.1 Site investigation
98(2)
7.1.2 Slope stability analyses at US 287 slope
100(1)
7.1.3 Slope stabilisation using RPPs
101(1)
7.1.4 Field installation
102(3)
7.1.5 Instrumentation and performance monitoring
105(4)
7.1.6 Performance of RPPs based on the results from instrumentation
109(6)
7.1.7 Performance of the unreinforced northbound slope
115(1)
7.2 Highway slope near Mockingbird Lane, Dallas, Texas
116(8)
7.2.1 Site investigation
116(2)
7.2.2 Slope stability analysis and design of slope stabilisation
118(2)
7.2.3 Field installation
120(3)
7.2.4 Field instrumentation and performance monitoring
123(1)
7.3 Highway slope at SH 183, Fort Worth, Texas
124(9)
7.3.1 Site investigation
124(1)
7.3.2 Slope stability analysis and design of slope stabilisation scheme
125(3)
7.3.3 Field installation
128(4)
7.3.4 Field instrumentation and performance monitoring
132(1)
7.4 Interstate 70 (I-70) Emma field test site in Columbia, Missouri (Loehr and Bowders, 2007)
133(12)
7.4.1 Site investigation
134(1)
7.4.2 Slope stabilisation scheme
135(1)
7.4.3 Field installation
136(3)
7.4.4 Instrumentation and performance monitoring
139(6)
7.5 Interstate 435 (I-435)--Wornall Road Field test site, Missouri
145(10)
7.5.1 Site investigation
145(1)
7.5.2 Slope stabilisation scheme
146(1)
7.5.3 Field installation
147(1)
7.5.4 Instrumentation and performance monitoring
148(7)
Appendix A Design charts 155(58)
Appendix B Sample calculations 213(16)
References 229(6)
Subject Index 235
Sahadat Hossain, Sadik Khan, Golam Kibria