Muutke küpsiste eelistusi

E-raamat: Switching Power Converters: Medium and High Power, Second Edition

(Woburn, Massachusetts, USA)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 126,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Preface Power electronics represents a branch of electronics dedicated to the controlled conversion of electrical energy. This conversion includes adaptation of power to diverse applications such as voltage or current power sources, electrical drives, active filtering in power systems, distributed generation and smart grid, electrochemical processes, inductive heating, lighting and cooking control, distributed generation, and naval or automotive electronics. This very broad range of applications has stimulated research and development, and new control methods of power hardware are suggested each day. The medium- and high-power converter systems require multidisciplinary knowledge of basic power electronics, digital control and hardware, sensors, analog preprocessing of signals, thermal management, reliability, protection devices and fault management, or mathematical calculus. Because of this great number of technical solutions with many variations of the same concepts, it is somehow difficult for the practicing engineer or for a student to keep track of new developments or to find the most appropriate solution in the given time. It is therefore easier to develop a reasoning based on system-level understanding of the problem rather than aiming at an encyclopedia collection of solutions. This naturally moves the question from "how to do it?" to "what is better to do?" Therefore, a good engineer involved in industrial activities needs to also understand technology evolution, market timing, component availability and technology cycling, social requirements for environment and reliability, all along the classical now circuit design. Libraries and bookstores offer a great number of books on power electronics, mostly academic textbooks of a theoretical nature without getting"--

An examination of all of the multidisciplinary aspects of medium- and high-power converter systems, including basic power electronics, digital control and hardware, sensors, analog preprocessing of signals, protection devices and fault management, and pulse-width-modulation (PWM) algorithms, Switching Power Converters: Medium and High Power, Second Edition discusses the actual use of industrial technology and its related subassemblies and components, covering facets of implementation otherwise overlooked by theoretical textbooks.

The updated Second Edition contains many new figures, as well as new and/or improved chapters on:

  • Thermal management and reliability
  • Intelligent power modules
  • AC/DC and DC/AC current source converters
  • Multilevel converters
  • Use of IPM within a "network of switches" concept
  • Power semiconductors
  • Matrix converters
  • Practical aspects in building power converters

Providing the latest research and development information, along with numerous examples of successful home appliance, aviation, naval, automotive electronics, industrial motor drive, and grid interface for renewable energy products, this edition highlights advancements in packaging technologies, tackles the advent of hybrid circuits able to incorporate control and power stages within the same package, and examines design for reliability from the system level perspective.

Arvustused

"Power converters are a worldwide necessity. Every 5-6 years a new generation of devices and converter technology emerges. [ The author] is very competent in this area, with strong experience in both industry and academia." Remus Teodorescu, Aalborg University, Denmark

Preface xvii
Acknowledgments xix
Author xxi
Chapter 1 Introduction to Medium- and High-Power Switching Converters
1(22)
1.1 Market for Medium- and High-Power Converters
1(6)
1.1.1 Technology Status
1(3)
1.1.2 Transportation Electrification Systems
4(2)
1.1.2.1 Automotive
4(1)
1.1.2.2 Aviation
4(1)
1.1.2.3 Railways
5(1)
1.1.2.4 Marine Power Systems
5(1)
1.1.3 Traditional Industrial Applications
6(2)
1.1.3.1 Motor Drives
6(1)
1.1.3.2 Grid-Tied Power Supplies
6(1)
1.1.3.3 Medium Voltage
7(1)
1.2 Book Coverage
7(1)
1.3 Adjustable Speed Drives
8(6)
1.3.1 AC/DC Converter
9(1)
1.3.2 Intermediate Circuit
10(1)
1.3.3 DC Capacitor Bank
10(1)
1.3.4 Soft-Charge Circuit
11(1)
1.3.5 DC Reactor
11(1)
1.3.6 Brake Circuit
11(1)
1.3.7 Three-Phase Inverter
12(1)
1.3.8 Protection Circuits
12(1)
1.3.9 Sensors
12(1)
1.3.10 Motor Connection
13(1)
1.3.11 Controller
13(1)
1.4 Grid Interfaces or Distributed Generation
14(4)
1.4.1 Grid Harmonics
15(1)
1.4.2 Power Factor
15(1)
1.4.3 DC Current Injection
15(1)
1.4.4 Electromagnetic Compatibility and Electromagnetic Inference
16(1)
1.4.5 Frequency and Voltage Variations
17(1)
1.4.6 Maximum Power Connected at Low-Voltage Grid
17(1)
1.5 Multiconverter Power Electronic Systems
18(1)
1.6 Conclusion
19(1)
References
19(4)
Part I Conventional Power Converters
Chapter 2 High-Power Semiconductor Devices
23(38)
2.1 A View on the Power Semiconductor Market
23(3)
2.2 Power MOSFETs
26(8)
2.2.1 Operation
26(6)
2.2.2 Control
32(2)
2.3 Insulated Gate Bipolar Transistors
34(12)
2.3.1 Operation
34(5)
2.3.2 Control, Gate Drivers
39(6)
2.3.2.1 Requirements
39(2)
2.3.2.2 Optimal Design of the Gate Resistor
41(4)
2.3.3 Protection
45(1)
2.4 Power Loss Estimation
46(2)
2.5 Active Gate Drivers
48(3)
2.6 Gate Turn-off Thyristors (GTOs)
51(1)
2.7 Advanced Power Devices
51(4)
2.7.1 Specialty Devices
51(2)
2.7.1.1 IGCT
51(1)
2.7.1.2 IGBT-RC
52(1)
2.7.1.3 IGBT-RB
52(1)
2.7.2 High-Frequency, High-Voltage Devices
53(1)
2.7.3 Using New Substrate Materials (SiC, GaN, and so on)
54(1)
2.8 Datasheet Information
55(1)
Problems
56(1)
References
57(4)
Chapter 3 Basic Three-Phase Inverters
61(34)
3.1 High-Power Devices Operated as Simple Switches
61(1)
3.2 Inverter Leg with Inductive Load Operation
62(1)
3.3 What Is a PWM Algorithm?
63(5)
3.4 Basic Three-Phase Voltage Source Inverter: Operation and Functions
68(5)
3.5 Performance Indices: Definitions and Terms Used in Different Countries
73(5)
3.5.1 Frequency Analysis
74(2)
3.5.2 Modulation Index for Three-Phase Converters
76(1)
3.5.3 Performance Indices
76(2)
3.5.3.1 Content in Fundamental (z)
76(1)
3.5.3.2 Total Harmonic Distortion (THD) Coefficient
76(1)
3.5.3.3 Harmonic Current Factor (HCF)
76(2)
3.5.3.4 Current Distortion Factor
78(1)
3.6 Direct Calculation of Harmonic Spectrum from Inverter Waveforms
78(3)
3.6.1 Decomposition in Quasi-Rectangular Waveforms
79(1)
3.6.2 Vectorial Method
80(1)
3.7 Preprogrammed PWM for Three-Phase Inverters
81(6)
3.7.1 Preprogrammed PWM for Single-Phase Inverter
82(2)
3.7.2 Preprogrammed PWM for Three-Phase Inverter
84(3)
3.7.3 Binary-Programmed PWM
87(1)
3.8 Modeling a Three-Phase Inverter with Switching Functions
87(2)
3.9 Braking Leg in Power Converters for Motor Drives
89(1)
3.10 DC Bus Capacitor within an AC/DC/AC Power Converter
90(2)
3.11 Conclusion
92(1)
Problems
93(1)
References
93(2)
Chapter 4 Carrier-Based Pulse Width Modulation and Operation Limits
95(36)
4.1 Carrier-Based Pulse Width Modulation Algorithms: Historical Importance
95(2)
4.2 Carrier-Based PWM Algorithms with Improved Reference
97(4)
4.3 PWM Used within Volt/Hertz Drives: Choice of Number of Pulses Based on the Desired Current Harmonic Factor
101(5)
4.3.1 Operation in the Low-Frequencies Range (Below Nominal Frequency)
104(2)
4.3.2 High Frequencies (>60 Hz)
106(1)
4.4 Implementation of Harmonic Reduction with Carrier PWM
106(2)
4.5 Limits of Operation: Minimum Pulse Width
108(12)
4.5.1 Avoiding Pulse Dropping by Harmonic Injection
114(6)
4.6 Limits of Operation
120(7)
4.6.1 Deadtime
120(4)
4.6.2 Zero Current Clamping
124(1)
4.6.3 Overmodulation
125(6)
4.6.3.1 Voltage Gain Linearization
126(1)
4.7 Conclusion
127(1)
Problems
127(1)
References
128(3)
Chapter 5 Vectorial PWM for Basic Three-Phase Inverters
131(48)
5.1 Review of Space Vector Theory
131(6)
5.1.1 History and Evolution of the Concept
131(1)
5.1.2 Theory: Vectorial Transforms and Advantages
132(4)
5.1.2.1 Clarke Transform
134(1)
5.1.2.2 Park Transform
135(1)
5.1.3 Application to Three-Phase Control Systems
136(1)
5.2 Vectorial Analysis of the Three-Phase Inverter
137(6)
5.2.1 Mathematical Derivation of Current Space Vector Trajectory in Complex Planes for Six-Step Operation (with Resistive and Resistive-Inductive Loads)
137(5)
5.2.2 Definition of Flux of a (Voltage) Vector and Ideal Flux Trajectory
142(1)
5.3 SVM Theory: Derivation of Time Intervals Associated to Active and Zero States by Averaging
143(3)
5.4 Adaptive SVM: DC Ripple Compensation
146(1)
5.5 Link to Vector Control: Different Forms and Expressions of Time Interval Equations in (d, q) Coordinate System
147(3)
5.6 Definition of Switching Reference Function
150(2)
5.7 Definition of Switching Sequence
152(10)
5.7.1 Continuous Reference Function: Different Methods
152(5)
5.7.2 Discontinuous Reference Function for Reduced Switching Loss
157(5)
5.8 Comparison between Different Vectorial PWM
162(2)
5.8.1 Loss Performance
162(1)
5.8.2 Comparison of Total Harmonic Distortion/HCF
162(2)
5.9 Overmodulation for SVM
164(1)
5.10 Volt-per-Hertz Control of PWM Inverters
165(3)
5.10.1 Low-Frequency Operation Mode
165(2)
5.10.2 High-Frequency Operation Mode
167(1)
5.11 Improving the Transient Response in High-Speed Converters
168(6)
5.12 Conclusion
174(1)
Problems
174(2)
References
176(3)
Chapter 6 Practical Aspects in Building Three-Phase Power Converters
179(36)
6.1 Selection of Power Devices in a Three-Phase Inverter
179(1)
6.1.1 Motor Drives
179(1)
6.1.1.1 Load Characteristics
179(1)
6.1.1.2 Maximum Current Available
179(1)
6.1.1.3 Maximum Apparent Power
179(1)
6.1.1.4 Maximum Active (Load) Power
179(1)
6.1.2 Grid Applications
180(1)
6.2 Protection
180(18)
6.2.1 Overcurrent
180(3)
6.2.2 Fuses
183(3)
6.2.3 Overtemperature
186(1)
6.2.4 Overvoltage
187(1)
6.2.5 Snubber Circuits
188(9)
6.2.5.1 Theory
188(4)
6.2.5.2 Component Selection
192(1)
6.2.5.3 Undeland Snubber Circuit
192(1)
6.2.5.4 Regenerative Snubber Circuits for Very Large Power
193(1)
6.2.5.5 Resonant Snubbers
193(4)
6.2.5.6 Active Snubbering
197(1)
6.2.6 Gate Driver Faults
197(1)
6.3 System Protection Management
198(1)
6.4 Reduction of Common Mode EMI through Inverter Techniques
198(4)
6.5 Typical Building Structures of the Conventional Inverter Depending on the Power Level
202(5)
6.5.1 Packages for Power Semiconductor Devices
202(2)
6.5.2 Converter Packaging
204(1)
6.5.3 Enclosures
205(2)
6.6 Auxiliary Power
207(5)
6.6.1 Requirements
207(1)
6.6.2 IC for Power Supplies
207(2)
6.6.3 Operation of a Flyback Power Converter
209(3)
6.7 Conclusion
212(1)
Problems
212(1)
References
213(2)
Chapter 7 Thermal Management and Reliability
215(28)
7.1 Thermal Management
215(5)
7.1.1 Theory
215(3)
7.1.2 Transient Thermal Impedance
218(2)
7.2 Theory of Reliability and Lifetime-Definitions
220(3)
7.3 Failure and Lifetime
223(5)
7.3.1 System Failure Rate
223(1)
7.3.2 Component Failure Rate
223(2)
7.3.3 Failure Rate for Diverse Components Used in Power Electronics
225(1)
7.3.4 Failure Modes for a Power Semiconductor Device
226(1)
7.3.5 Wear-Out Mechanisms in Power Semiconductors
226(2)
7.4 Lifetime Calculation and Modeling
228(6)
7.4.1 Problem Setting
228(1)
7.4.2 Accelerated Tests for Electronic Equipment
229(5)
7.4.2.1 Using the Activation Energy Method
229(2)
7.4.2.2 Temperature Cycling
231(1)
7.4.2.3 Accelerated Tests for Power Cycling
232(2)
7.4.3 Modeling with Physics of Failure
234(1)
7.5 Standards and Software Tools
234(3)
7.5.1 Standards
234(1)
7.5.2 Software Tools
235(11)
7.5.2.1 Tools Derived from Theory of Reliability
235(1)
7.5.2.2 Tools Derived from Microelectronics
236(1)
7.5.2.3 Power Electronics Specifics
236(1)
7.6 Factory Reliability Testing of Semiconductors
237(1)
7.7 Design for Reliability
238(1)
7.8 Conclusion
239(1)
References
240(3)
Chapter 8 Implementation of Pulse Width Modulation Algorithms
243(36)
8.1 Analog Pulse Width Modulation Controllers
243(2)
8.2 Mixed-Mode Motor Controller ICs
245(1)
8.3 Digital Structures with Counters: FPGA Implementation
246(7)
8.3.1 Principle of Digital PWM Controllers
246(3)
8.3.2 Bus Compatible Digital PWM Interfaces
249(1)
8.3.3 FPGA Implementation of Space Vector Modulation Controllers
250(3)
8.3.4 Deadtime Digital Controllers
253(1)
8.4 Markets for General-Purpose and Dedicated Digital Processors
253(5)
8.4.1 History of Using Microprocessors/ Microcontrollers in Power Converter Control
253(3)
8.4.2 DSPs Used in Power Converter Control
256(1)
8.4.3 Parallel Processing in Multiprocessor Structures
257(1)
8.5 Software Implementation in Low-Cost Microcontrollers
258(5)
8.5.1 Software Manipulation of Counter Timing
258(1)
8.5.2 Calculation of Time Interval Constants
259(4)
8.6 Microcontrollers with Power Converter Interfaces
263(2)
8.7 Motor Control Coprocessors
265(1)
8.8 Using the Event Manager within Texas Instrument's DSPs
266(4)
8.8.1 Event Manager Structure
266(1)
8.8.2 Software Implementation of Carrier- Based PWM
267(1)
8.8.3 Software Implementation of SVM
267(1)
8.8.4 Hardware Implementation of SVM
268(1)
8.8.5 Deadtime
269(1)
8.8.6 Individual PWM Channels
270(1)
8.9 Using Flash Memories
270(3)
8.10 About Resolution and Accuracy of PWM Implementation
273(2)
8.11 Conclusion
275(1)
References
276(3)
Chapter 9 Practical Aspects in Closed-Loop Control
279(14)
9.1 Role, Schematics
279(1)
9.2 Current Measurement-Synchronization with PWM
279(5)
9.2.1 Shunt Resistor
279(3)
9.2.2 Hall Effect Sensors
282(1)
9.2.3 Current Sensing Transformer
282(1)
9.2.4 Synchronization with PWM
283(1)
9.3 Current Sampling Rate-Oversampling
284(1)
9.4 Current Control in (a,b,c) Coordinates
284(2)
9.5 Current Transforms (3->2)-Software Calculation of Transforms
286(1)
9.6 Current Control in (d, q)-Models-PI Calibration
287(2)
9.7 Anti-Wind-Up Protection-Output Limitation and Range Definition
289(1)
9.8 Conclusion
290(1)
References
290(3)
Chapter 10 Intelligent Power Modules
293(16)
10.1 Market and Technology Considerations
293(5)
10.1.1 History
293(1)
10.1.2 Advantages and Drawbacks
294(1)
10.1.3 IGBT Chip
295(1)
10.1.4 Gate Driver
296(1)
10.1.5 Packaging
296(2)
10.1.6 Other Approaches
298(1)
10.2 Review of IPM Devices Available
298(3)
10.3 Use of IPM Devices
301(4)
10.3.1 Local Power Supplies
301(3)
10.3.2 Clamping the Regenerative Energy
304(1)
References
305(4)
Part II Other Topologies
Chapter 11 Resonant Three-Phase Converters
309(32)
11.1 Reducing Switching Losses through Resonance versus Advanced PWM Devices
309(2)
11.2 Do We Still Get Advantages from Resonant High Power Converters?
311(4)
11.3 Zero Voltage Transition of IGBT Devices
315(12)
11.3.1 Power Semiconductor Devices under Zero Voltage Switching
315(2)
11.3.2 Step-Down Conversion
317(5)
11.3.3 Step-Up Power Transfer
322(3)
11.3.4 Bi-Directional Power Transfer
325(2)
11.4 Zero Current Transition of IGBT Devices
327(8)
11.4.1 Power Semiconductor Devices under Zero Current Switching
327(2)
11.4.2 Step-Down Conversion
329(3)
11.4.3 Step-Up Conversion
332(3)
11.5 Possible Topologies of Quasi-Resonant Converters
335(2)
11.5.1 Pole Voltage
335(1)
11.5.2 Resonant DC Bus
336(1)
11.6 Special PWM for Three-Phase Resonant Converters
337(1)
Problems
338(1)
References
338(3)
Chapter 12 Component-Minimized Three-Phase Power Converters
341(22)
12.1 Solutions for Reduction of Number of Components
341(5)
12.1.1 New Inverter Topologies
341(4)
12.1.2 Direct Converters
345(1)
12.2 B4 Inverter
346(9)
12.2.1 Vectorial Analysis of the B4 Inverter
346(5)
12.2.2 Definition of PWM Algorithms for the B4 Inverter
351(2)
12.2.3 Influence of DC Voltage Variations and Method for Their Compensation
353(2)
12.3 Two-Leg Converter Used in Feeding a Two-Phase IM
355(1)
12.4 Z-Source Inverter
356(4)
12.5 Conclusion
360(1)
References
360(3)
Chapter 13 AC/DC Grid Interface Based on the Three-Phase Voltage Source Converter
363(46)
13.1 Particularities-Control Objectives-Active Power Control
363(5)
13.2 Meaning of PWM in the Control System
368(18)
13.2.1 Single-Switch Applications
368(9)
13.2.2 Six-Switch Converters
377(4)
13.2.3 Topologies with Current Injection Devices
381(5)
13.3 Closed-Loop Current Control Methods
386(17)
13.3.1 Introduction
386(1)
13.3.2 PI Current Loop
386(1)
13.3.3 Transient Response Times
387(1)
13.3.4 Limitation of the (vd,vq) Voltages
388(1)
13.3.5 Minimum Time Current Control
388(2)
13.3.6 Cross-Coupling Terms
390(2)
13.3.7 Application of the Whole Available Voltage on the d-Axis
392(1)
13.3.8 Switch Table and Hysteresis Control
393(2)
13.3.9 Phase Current Tracking Methods
395(21)
13.3.9.1 P-I-S controller
395(4)
13.3.9.2 Feed-Forward Controller
399(4)
13.4 Grid Synchronization
403(2)
Problems
405(1)
References
406(3)
Chapter 14 Parallel and Interleaved Power Converters
409(24)
14.1 Comparison between Converters Built of High-Power Devices and Solutions Based on Multiple Parallel Lower-Power Devices
409(2)
14.2 Hardware Constraints in Paralleling IGBTs
411(4)
14.3 Gate Control Designs for Equal Current Sharing
415(1)
14.4 Advantages and Disadvantages of Paralleling Inverter Legs with Respect to Using Parallel Devices
416(8)
14.4.1 Inter-Phase Reactors
417(1)
14.4.2 Control System
418(1)
14.4.3 Converter Control Solutions
418(2)
14.4.4 Current Control
420(1)
14.4.5 Small-Signal Modeling for (d, q) Control in a Parallel Converter System
421(2)
14.4.6 (d, q) versus (d, q, 0) Control
423(1)
14.5 Interleaved Operation of Power Converters
424(1)
14.6 Circulating Currents
425(2)
14.7 Selection of the PWM Algorithm
427(2)
14.8 System Controller
429(2)
14.9 Conclusion
431(1)
Problems
431(1)
References
431(2)
Chapter 15 AC/DC and DC/AC Current Source Converters
433(22)
15.1 Introduction
433(1)
15.2 Current Commutation
434(2)
15.3 Using Switching Functions to Define Operation
436(5)
15.4 PWM Control
441(5)
15.4.1 Trapezoidal Modulation
441(1)
15.4.2 Harmonic Elimination Programmed Modulation
441(1)
15.4.3 Sinusoidal Modulation
442(2)
15.4.4 Space Vector Modulation
444(2)
15.5 Optimization of PWM Algorithms
446(3)
15.5.1 Minimum Squared Error
447(1)
15.5.2 Circular Corona
447(1)
15.5.3 Reducing the Low Harmonics from the Geometrical Locus
447(1)
15.5.4 Comparative Results
447(2)
15.6 Resonance in the AC-Side of the CSI Converter Filter Assembly
449(3)
15.7 Conclusions
452(1)
References
453(2)
Chapter 16 AC/AC Matrix Converters as a 9-Switch Topology
455(30)
16.1 Background
455(3)
16.2 Implementation of the Power Switch
458(1)
16.3 Current Commutation
459(2)
16.4 Clamping the Reactive Energy
461(1)
16.5 PWM Algorithms
461(18)
16.5.1 Sinusoidal Carrier-Based PWM
461(4)
16.5.2 Space Vector Modulation Considering All Possible Switching Vectors
465(5)
16.5.2.1 Selection of the Closest Rotating and Stationary Vectors
467(1)
16.5.2.2 Definition of Time Intervals
467(3)
16.5.3 Space Vector Modulation Considering Stationary Vectors Only
470(6)
16.5.4 Indirect Matrix Converter (Sparse Converter)
476(1)
16.5.5 Implementation of PWM Control
477(2)
16.6 Conclusion
479(3)
References
482(3)
Chapter 17 Multilevel Converters
485(16)
17.1 Principle and Hardware Topologies
485(6)
17.1.1 H-Bridge Modules
485(2)
17.1.2 Flying Capacitor Multilevel Converter
487(2)
17.1.3 Diode-Clamped Multilevel Converter
489(1)
17.1.4 Combination Converters
490(1)
17.2 Design and Rating Considerations
491(1)
17.2.1 Semiconductor Ratings
491(1)
17.2.2 Passive Filters
492(1)
17.3 PWM Algorithms
492(7)
17.3.1 Principle
492(1)
17.3.2 Sinusoidal PWM
493(4)
17.3.3 Space Vector Modulation
497(1)
17.3.4 Harmonic Elimination
498(1)
17.4 Application Specifics
499(1)
17.4.1 HVDC Lines
499(1)
17.4.2 FACTS
499(1)
17.4.3 Motor Drives
499(1)
References
500(1)
Chapter 18 Use of IPM within a "Network of Switches" Concept
501(48)
18.1 Grid Interface for Extended Power Range
501(6)
18.2 Matrix Converter Made Up of VSI Power Modules
507(4)
18.2.1 Conventional Matrix Converter Packaged with VSI Modules
507(1)
18.2.2 Dyadic Matrix Converter with VSI Modules
508(3)
18.3 Multilevel Converter Made Up of Multiple Power Modules
511(1)
18.4 New Topology Built of Power Modules and Its Applications
511(10)
18.4.1 Cyclo-Converters
511(4)
18.4.2 Control System
515(3)
18.4.3 PWM Generator
518(3)
18.5 Generalized Vector Transform
521(4)
18.6 IPM in IGBT-Based AC/AC Direct Converters Built of Current Source Inverter Modules
525(7)
18.6.1 Hardware Development
525(3)
18.6.2 Product Requirements
528(1)
18.6.3 Performance
529(3)
18.7 Using MATLAB-Based Multimillion FFT for Analysis of Direct AC/AC Converters
532(14)
18.7.1 Introduction to Harmonic Analysis of Direct or Matrix Converters
532(3)
18.7.2 Parameter Selection
535(5)
18.7.3 FFT in MATLAB
540(1)
18.7.4 Analysis of a Direct Converter
540(3)
18.7.5 Automation of Multipoint THD and HCF Analysis
543(2)
18.7.6 Comments on Computer Performance
545(1)
References
546(3)
Index 549
Author of three US patents, Dorin O. Neacsu is associate professor for, and holds an M.Sc and Ph.D in electronics from, the Technical University of Iasi, Romania. He also holds an M.Sc in engineering management from Tufts Gordon Institute, Medford, Massachusetts, USA. The well-published, senior IEEE member has worked with TAGCM-SUT Iasi, Romania; Universite du Quebec a Trois Rivieres, Canada; General Motors/Delphi, Indianapolis, Indiana, USA; International Rectifier, El Segundo, California, USA; SatCon, Boston, Massachusetts, USA; Azure Dynamics/Solectria, Woburn, Massachusetts, USA; University of New Orleans, Louisiana, USA; Massachusetts Institute of Technology, Cambridge, USA; and United Technologies Research Center, East Hartford, Connecticut, USA.