Introduction |
|
1 | (6) |
|
|
7 | (36) |
|
Zero-equivalence of Constants |
|
|
8 | (5) |
|
Richardson's Uniformity Conjecture |
|
|
11 | (2) |
|
Zero-equivalence of Functions |
|
|
13 | (14) |
|
|
22 | (3) |
|
|
25 | (2) |
|
Modular Methods in Zero Equivalence |
|
|
27 | (4) |
|
|
28 | (2) |
|
|
30 | (1) |
|
|
31 | (2) |
|
|
32 | (1) |
|
Systems of Partial Differential Equations |
|
|
33 | (6) |
|
|
33 | (2) |
|
Radical Differential Ideals |
|
|
35 | (1) |
|
Computing Characteristic Sets |
|
|
36 | (1) |
|
The Rosenfeld-Grobner Algorithm |
|
|
36 | (2) |
|
Consequences, Applications |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
39 | (4) |
|
|
43 | (16) |
|
|
43 | (2) |
|
|
45 | (5) |
|
|
50 | (4) |
|
|
54 | (5) |
|
|
59 | (24) |
|
|
59 | (2) |
|
|
61 | (2) |
|
Operations on Multiseries |
|
|
63 | (8) |
|
Substituting into a Power Series |
|
|
65 | (3) |
|
The Logarithm of a Multiseries |
|
|
68 | (1) |
|
The Exponential of a Multiseries |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
70 | (1) |
|
Substituting One Multiseries Into Another |
|
|
70 | (1) |
|
|
71 | (7) |
|
Comparison of Nested Forms |
|
|
74 | (2) |
|
Operations on Nested Forms and Expansions |
|
|
76 | (2) |
|
The Algebra of Star Products |
|
|
78 | (5) |
|
Definitions and Elementary Properties |
|
|
78 | (3) |
|
Differentiation and Star Products |
|
|
81 | (2) |
|
Algorithms for Function Towers |
|
|
83 | (46) |
|
|
84 | (8) |
|
Case 1: fi = log h, h ε Fi-1 |
|
|
85 | (1) |
|
Case 2: fi = exp h, h ε Fi-1 |
|
|
86 | (1) |
|
Handling Denominators and Other Powers |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
88 | (4) |
|
|
92 | (24) |
|
|
100 | (1) |
|
|
101 | (9) |
|
|
110 | (6) |
|
Compositions with Meromorphic Functions |
|
|
116 | (9) |
|
Cartesian Representations |
|
|
125 | (4) |
|
Algebraic Differential Equations |
|
|
129 | (26) |
|
Nested Forms of Hardy-Field Solutions |
|
|
130 | (14) |
|
|
140 | (4) |
|
|
144 | (6) |
|
|
150 | (5) |
|
A Theorem for Sparse Differential Equations |
|
|
151 | (4) |
|
|
155 | (20) |
|
Inverting a Nested Expansion |
|
|
156 | (7) |
|
Summary of the Algorithm for Inversion |
|
|
161 | (1) |
|
|
161 | (2) |
|
Multiseries of Inverse Functions |
|
|
163 | (12) |
|
Proof of the Iteration Formula |
|
|
169 | (4) |
|
Asymptotic Fields and Inverse Functions |
|
|
173 | (2) |
|
|
175 | (16) |
|
|
176 | (3) |
|
Computation and Checking of Candidates |
|
|
177 | (1) |
|
|
178 | (1) |
|
Systems of Exp-Log Equations |
|
|
179 | (12) |
|
|
180 | (1) |
|
|
180 | (2) |
|
Building estimates from the Tower of Fields |
|
|
182 | (1) |
|
|
182 | (1) |
|
Extension by an Exponential |
|
|
183 | (1) |
|
Obtaining the Nested Forms |
|
|
184 | (1) |
|
|
185 | (2) |
|
|
187 | (2) |
|
|
189 | (2) |
|
|
191 | (24) |
|
|
191 | (10) |
|
Rewriting Exp--Log Expressions Into Standard Star Expansion Form |
|
|
193 | (3) |
|
|
196 | (5) |
|
Growth Classes in Hardy Fields |
|
|
201 | (3) |
|
|
201 | (3) |
|
Generalized Star Products |
|
|
204 | (5) |
|
|
207 | (1) |
|
Non-integral Iterates and Multiple Scales |
|
|
208 | (1) |
|
Real Iterates of Increasing Functions |
|
|
209 | (6) |
|
|
215 | (20) |
|
An Interval Calculus Algorithm |
|
|
216 | (4) |
|
Our Calculus of Intervals |
|
|
217 | (3) |
|
|
220 | (4) |
|
|
224 | (7) |
|
|
231 | (4) |
References |
|
235 | (6) |
Index |
|
241 | |