Muutke küpsiste eelistusi

E-raamat: Symbolic Data Analysis and the SODAS Software

Edited by (Universite de Paris IX - Dauphine, France), Edited by (University of Namur, Belgium)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 15-Apr-2008
  • Kirjastus: Wiley-Interscience
  • Keel: eng
  • ISBN-13: 9780470723555
  • Formaat - PDF+DRM
  • Hind: 177,78 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 15-Apr-2008
  • Kirjastus: Wiley-Interscience
  • Keel: eng
  • ISBN-13: 9780470723555

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Symbolic data analysis (SDA) plays a key role in the interaction between statistics and data processing. Through an extension of the concepts employed in data mining, this work provides an advanced guide to the techniques required to analyze symbolic data. It also provides an introduction to the SODAS software, which is complementary to existing data analysis software that is unable to work with symbolic data. After an introductory mathematical framework, sections cover databases versus symbolic objects, unsupervised and supervised methods, and applications of the SODAS software. A supporting web site hosts the software. The book is aimed primarily at practitioners of symbolic data analysis, such as statisticians and economists, in the public and private sectors. It will also be of interest to postgraduate students and researchers in web mining, text mining, and bioengineering. Diday is affiliated with the University of Paris IX, France. Noirhomme-Fraiture is affiliated with the University of Namur, Belgium. Annotation ©2008 Book News, Inc., Portland, OR (booknews.com)

Symbolic data analysis is a relatively new field that provides a range of methods for analyzing complex datasets. Standard statistical methods do not have the power or flexibility to make sense of very large datasets, and symbolic data analysis techniques have been developed in order to extract knowledge from such data. Symbolic data methods differ from that of data mining, for example, because rather than identifying points of interest in the data, symbolic data methods allow the user to build models of the data and make predictions about future events.
This book is the result of the work  f a pan-European project team led by Edwin Diday following 3 years work sponsored by EUROSTAT.  It includes a full explanation of the new SODAS software developed as a result of this project. The software and methods described highlight the crossover between statistics and computer science, with a particular emphasis on data mining.
Contributors.
Foreword.
Preface.
Introduction.
1. The state of the art in symbolic data analysis: overview and future (Edwin Diday and Monique-Noirhomme-Fraiture).
PART I. DATABASES VERSUS SYMBOLIC OBJECTS.
2. Improved generation of symbolic objects from relational databases (Yves Lechevallier, Aicha El Golli and George Hébrail).
3. Exporting symbolic objects to databases (Donato Malerba, Floriana Esposito and Annalisa Appice).
4. A statistical metadata model for symbolic objects (H. Papageorgiou and Maria Vardaki).
5. Editing symbolic data (Monique-Noirhomme-Fraiture, Paula Brito, Anne de Baenst-Vandenbroucke and A. Nahimana).
6. The normal symbolic form (M. Csernel and Francisco de A.T. de Carvalho).
7. Visualization (Monique-Noirhomme-Fraiture and A. Nahimana).
PART II. UNSUPERVISED METHODS.
8. Dissimilarity and matching (Floriana Esposito, Donato Malerba and Annalisa Appice).
9. Unsupervised divisive classification (Jean-Paul Rasson, Jean-Yves Pirçon, Pascale Lallemand and S‚verine Adans).
10. Hierarchical and pyramidal clustering (Paula Brito and Francisco de A.T. de Carvalho).
11 .Clustering methods in symbolic data analysis (Francisco de A.T. de Carvalho, Yves Lechevallier and Rosanna Verde).
12. Visualizing symbolic data by Kohonen maps (Hans-Hermann Bock).
13 .Validation of clustering structure: determination of the number of clusters (André Hardy).
14. Stability measures for assessing a partition and its clusters: application to symbolic data sets (P. Bertrand and G. Bel Mufti).
15. Principal component analysis of symbolic data described by intervals (N.C. Lauro, Rosanna Verde and A. Irpino).
16. Generalized canonical analysis (N.C. Lauro, Rosanna Verde and A. Irpino).
PART III .SUPERVISED METHODS.
17. Bayesian decision trees (Jean-Paul Rasson, Pascale Lallemand and Séverine Adans).
18. Factor discriminant analysis (N.C. Lauro, Rosanna Verde and A. Irpino).
19. Symbolic linear regression methodology (Filipe Afonso, Lynne Billard, Edwin Diday and Mehdi Limam).
20. Multi-layer perceptrons and symbolic data (Fabrice Rossi and Brieuc Conan-Guez).
PART IV. APPLICATION AND THE SODAS SOFTWARE.
21. Application to the Finnish, Spanish and Portuguese data of the European Social Survey (Soile Mustjärvi and Seppo Laaksonen).
22. People’s life values and trust components in Europe: symbolic data analysis for 20-22 countries (Seppo Laaksonen).
23. Symbolic analysis of the Time Use Survey in the Basque country (M. Mas and H. Olaeta).
24. SODAS2 software: overview and methodology (Anne de Baenst-Vandenbroucke and Yves Lechevallier).
Index.


Edwin Diday, Centre De Recherche en Mathématiques de la Décision, Université Paris 9, France Edwin is a Professor of Computer Science, with 50 published papers, and 14 authored or edited books to his name. He has led international research teams in Symbolic Data Analysis, and is the founder of the field. M. Noirhomme-Fraiture, Institute of Computer Science, University of Namur, Belgium Monique Noirhomme-Fraiture is Professor and Head of the Unit of Applied Mathematics at the above faculty. She is involved in several HCI projects as well as having organized conferences and workshops within this field. She has contributed to 28 published papers and co-authored 2 books.