Notation |
|
xiii | |
Introduction |
|
xix | |
|
1 The Kashiwara-Vergne Method for Lie Groups |
|
|
1 | (50) |
|
1.1 A General Convolution Problem |
|
|
1 | (2) |
|
1.2 The Kashiwara-Vergne Method |
|
|
3 | (1) |
|
|
4 | (4) |
|
|
8 | (2) |
|
1.5 The Kashiwara-Vergne Conjecture |
|
|
10 | (6) |
|
|
10 | (1) |
|
1.5.2 Remarks on the Conjecture |
|
|
11 | (4) |
|
|
15 | (1) |
|
1.6 An Elementary Proof for sl(2, R) |
|
|
16 | (6) |
|
|
17 | (1) |
|
|
18 | (1) |
|
1.6.3 A Trace Formula for sl(2, R) |
|
|
19 | (1) |
|
|
19 | (3) |
|
1.7 Two Symmetries of the Kashiwara-Vergne Problem |
|
|
22 | (6) |
|
|
23 | (1) |
|
|
23 | (4) |
|
1.7.3 Symmetry Invariant Solutions |
|
|
27 | (1) |
|
1.8 From (KV1) Towards (KV2) |
|
|
28 | (14) |
|
1.8.1 Tangential Derivations and Automorphisms |
|
|
29 | (2) |
|
1.8.2 Behavior Under Scaling Maps |
|
|
31 | (1) |
|
1.8.3 Using Associativity |
|
|
32 | (1) |
|
1.8.4 A “r;Divergence”r; and a “r;Jacobian”r; |
|
|
33 | (3) |
|
1.8.5 A Cohomology Argument |
|
|
36 | (2) |
|
1.8.6 An Expression of the Divergence |
|
|
38 | (1) |
|
|
39 | (3) |
|
1.9 The Case of Quadratic or Solvable Lie Algebras |
|
|
42 | (4) |
|
|
46 | (5) |
|
1.10.1 An Abstract Formulation of the Kashiwara-Vergne Problem |
|
|
46 | (1) |
|
1.10.2 Drinfeld's Associators and the Kashiwara-Vergne Conjecture |
|
|
47 | (1) |
|
|
48 | (3) |
|
2 Convolution on Homogeneous Spaces |
|
|
51 | (6) |
|
2.1 Definition and Examples |
|
|
51 | (3) |
|
2.2 Extension to Line Bundles |
|
|
54 | (3) |
|
|
54 | (1) |
|
2.2.2 Convolution of Distributions on Lχ |
|
|
55 | (1) |
|
|
56 | (1) |
|
3 The Role of e-Functions |
|
|
57 | (62) |
|
3.1 Transferring Convolutions |
|
|
58 | (5) |
|
|
58 | (2) |
|
|
60 | (3) |
|
3.2 Special Symmetric Spaces |
|
|
63 | (5) |
|
3.3 e-Functions and Invariant Differential Operators |
|
|
68 | (11) |
|
3.3.1 The Fischer Product |
|
|
68 | (1) |
|
3.3.2 Explicit Transfer of Invariant Differential Operators |
|
|
69 | (4) |
|
3.3.3 Example: The Laplace-Beltrami Operator |
|
|
73 | (4) |
|
3.3.4 Towards a Generalized Duflo Isomorphism |
|
|
77 | (2) |
|
3.4 e-Functions, Mean Values and Spherical Functions |
|
|
79 | (7) |
|
3.4.1 The Case of an Isotropic Riemannian Symmetric Space |
|
|
79 | (3) |
|
3.4.2 Expansion of Mean Value Operators and Spherical Functions |
|
|
82 | (4) |
|
3.5 e-Functions and Integral Formulas |
|
|
86 | (5) |
|
3.6 e-Functions and Noncompact Symmetric Spaces |
|
|
91 | (14) |
|
|
91 | (5) |
|
3.6.2 Link with the Iwasawa Projection |
|
|
96 | (3) |
|
3.6.3 Extension of Duflo's Isomorphism |
|
|
99 | (6) |
|
3.7 An e-Function for Symmetric Spaces of Rank One |
|
|
105 | (8) |
|
3.7.1 Outline of the Proof |
|
|
107 | (1) |
|
3.7.2 Properties of the Rank One e-Function |
|
|
108 | (4) |
|
3.7.3 Application to Spherical Functions |
|
|
112 | (1) |
|
3.8 Extension to Line Bundles |
|
|
113 | (3) |
|
|
116 | (3) |
|
|
116 | (3) |
|
4 e-Functions and the Campbell-Hausdorff Formula |
|
|
119 | (58) |
|
4.1 Contractions of Symmetric Spaces |
|
|
120 | (2) |
|
|
122 | (15) |
|
|
122 | (1) |
|
|
123 | (4) |
|
|
127 | (4) |
|
|
131 | (2) |
|
|
133 | (4) |
|
4.3 Campbell-Hausdorff e-Functions |
|
|
137 | (8) |
|
|
137 | (1) |
|
4.3.2 Construction of an e-Function |
|
|
138 | (4) |
|
4.3.3 Application to Invariant Differential Operators |
|
|
142 | (3) |
|
4.4 Properties of Campbell-Hausdorff e-Functions |
|
|
145 | (12) |
|
|
146 | (1) |
|
4.4.2 Some Deeper Properties of e |
|
|
147 | (10) |
|
4.5 Extension to Line Bundles |
|
|
157 | (3) |
|
|
160 | (14) |
|
4.6.1 Expansions of Z, h, A, B, C |
|
|
161 | (1) |
|
|
162 | (1) |
|
4.6.3 Expansions of E and ex |
|
|
163 | (3) |
|
4.6.4 Expansions of Z, h. A, C Modulo Y2 |
|
|
166 | (5) |
|
4.6.5 Expansion of Φ Modulo Y2 |
|
|
171 | (1) |
|
4.6.6 Expansions of E and ex Modulo Y2 |
|
|
172 | (2) |
|
|
174 | (3) |
|
|
175 | (2) |
A Proof of Lemma 3.22 |
|
177 | (4) |
B Proof of Theorem 3.23 |
|
181 | (10) |
Bibliography |
|
191 | (4) |
Index |
|
195 | |