Muutke küpsiste eelistusi

E-raamat: Symmetric Spaces and the Kashiwara-Vergne Method

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 2115
  • Ilmumisaeg: 14-Oct-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319097732
  • Formaat - PDF+DRM
  • Hind: 40,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 2115
  • Ilmumisaeg: 14-Oct-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319097732

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Gathering and updating results scattered in journal articles over thirty years, this self-contained monograph gives a comprehensive introduction to the subject. Its goal is to: - motivate and explain the method for general Lie groups, reducing the proof of deep results in invariant analysis to the verification of two formal Lie bracket identities related to the Campbell-Hausdorff formula (the "Kashiwara-Vergne conjecture"); - give a detailed proof of the conjecture for quadratic and solvable Lie algebras, which is relatively elementary; - extend the method to symmetric spaces; here an obstruction appears, embodied in a single remarkable object called an "e-function"; - explain the role of this function in invariant analysis on symmetric spaces, its relation to invariant differential operators, mean value operators and spherical functions; - give an explicit e-function for rank one spaces (the hyperbolic spaces); - construct an e-function for general symmetric spaces, in the spirit

of Kashiwara and Vergne"s original work for Lie groups. The book includes a complete rewriting of several articles by the author, updated and improved following Alekseev, Meinrenken and Torossian"s recent proofs of the conjecture. The chapters are largely independent of each other. Some open problems are suggested to encourage future research. It is aimed at graduate students and researchers with a basic knowledge of Lie theory.

Introduction.- Notation.- The Kashiwara-Vergne method for Lie groups.- Convolution on homogeneous spaces.- The role of e-functions.- e-functions and the Campbell Hausdorff formula.- Bibliography.
Notation xiii
Introduction xix
1 The Kashiwara-Vergne Method for Lie Groups
1(50)
1.1 A General Convolution Problem
1(2)
1.2 The Kashiwara-Vergne Method
3(1)
1.3 The Equation (KV1)
4(4)
1.4 The Equation (KV2)
8(2)
1.5 The Kashiwara-Vergne Conjecture
10(6)
1.5.1 The Conjecture
10(1)
1.5.2 Remarks on the Conjecture
11(4)
1.5.3 Non-uniqueness
15(1)
1.6 An Elementary Proof for sl(2, R)
16(6)
1.6.1 Choice of F and G
17(1)
1.6.2 A Variant of (KV2)
18(1)
1.6.3 A Trace Formula for sl(2, R)
19(1)
1.6.4 Proof of (KV2)
19(3)
1.7 Two Symmetries of the Kashiwara-Vergne Problem
22(6)
1.7.1 The Symmetry α
23(1)
1.7.2 The Symmetry β
23(4)
1.7.3 Symmetry Invariant Solutions
27(1)
1.8 From (KV1) Towards (KV2)
28(14)
1.8.1 Tangential Derivations and Automorphisms
29(2)
1.8.2 Behavior Under Scaling Maps
31(1)
1.8.3 Using Associativity
32(1)
1.8.4 A “r;Divergence”r; and a “r;Jacobian”r;
33(3)
1.8.5 A Cohomology Argument
36(2)
1.8.6 An Expression of the Divergence
38(1)
1.8.7 Conclusion
39(3)
1.9 The Case of Quadratic or Solvable Lie Algebras
42(4)
1.10 The General Case
46(5)
1.10.1 An Abstract Formulation of the Kashiwara-Vergne Problem
46(1)
1.10.2 Drinfeld's Associators and the Kashiwara-Vergne Conjecture
47(1)
Notes
48(3)
2 Convolution on Homogeneous Spaces
51(6)
2.1 Definition and Examples
51(3)
2.2 Extension to Line Bundles
54(3)
2.2.1 The Line Bundle Lχ
54(1)
2.2.2 Convolution of Distributions on Lχ
55(1)
Notes
56(1)
3 The Role of e-Functions
57(62)
3.1 Transferring Convolutions
58(5)
3.1.1 The Transfer Map
58(2)
3.1.2 e-Functions
60(3)
3.2 Special Symmetric Spaces
63(5)
3.3 e-Functions and Invariant Differential Operators
68(11)
3.3.1 The Fischer Product
68(1)
3.3.2 Explicit Transfer of Invariant Differential Operators
69(4)
3.3.3 Example: The Laplace-Beltrami Operator
73(4)
3.3.4 Towards a Generalized Duflo Isomorphism
77(2)
3.4 e-Functions, Mean Values and Spherical Functions
79(7)
3.4.1 The Case of an Isotropic Riemannian Symmetric Space
79(3)
3.4.2 Expansion of Mean Value Operators and Spherical Functions
82(4)
3.5 e-Functions and Integral Formulas
86(5)
3.6 e-Functions and Noncompact Symmetric Spaces
91(14)
3.6.1 The Function E ∞
91(5)
3.6.2 Link with the Iwasawa Projection
96(3)
3.6.3 Extension of Duflo's Isomorphism
99(6)
3.7 An e-Function for Symmetric Spaces of Rank One
105(8)
3.7.1 Outline of the Proof
107(1)
3.7.2 Properties of the Rank One e-Function
108(4)
3.7.3 Application to Spherical Functions
112(1)
3.8 Extension to Line Bundles
113(3)
3.9 Open Problems
116(3)
Notes
116(3)
4 e-Functions and the Campbell-Hausdorff Formula
119(58)
4.1 Contractions of Symmetric Spaces
120(2)
4.2 The Diffeomorphism Φ
122(15)
4.2.1 Lie Series
122(1)
4.2.2 Z, h
123(4)
4.2.3 A, B, C
127(4)
4.2.4 a, B and Φ
131(2)
4.2.5 c, H and Φ
133(4)
4.3 Campbell-Hausdorff e-Functions
137(8)
4.3.1 An Auxiliary Lemma
137(1)
4.3.2 Construction of an e-Function
138(4)
4.3.3 Application to Invariant Differential Operators
142(3)
4.4 Properties of Campbell-Hausdorff e-Functions
145(12)
4.4.1 e and c
146(1)
4.4.2 Some Deeper Properties of e
147(10)
4.5 Extension to Line Bundles
157(3)
4.6 Taylor Expansions
160(14)
4.6.1 Expansions of Z, h, A, B, C
161(1)
4.6.2 Expansion of Φ
162(1)
4.6.3 Expansions of E and ex
163(3)
4.6.4 Expansions of Z, h. A, C Modulo Y2
166(5)
4.6.5 Expansion of Φ Modulo Y2
171(1)
4.6.6 Expansions of E and ex Modulo Y2
172(2)
4.7 Open Problems
174(3)
Notes
175(2)
A Proof of Lemma 3.22 177(4)
B Proof of Theorem 3.23 181(10)
Bibliography 191(4)
Index 195