Muutke küpsiste eelistusi

E-raamat: Symmetrization in Analysis

(Washington University, St Louis)
  • Formaat: EPUB+DRM
  • Sari: New Mathematical Monographs
  • Ilmumisaeg: 14-Mar-2019
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108583404
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 174,13 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: New Mathematical Monographs
  • Ilmumisaeg: 14-Mar-2019
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108583404
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Symmetrization is a rich area of mathematical analysis whose history reaches back to antiquity. This book presents many aspects of the theory, including symmetric decreasing rearrangement and circular and Steiner symmetrization in Euclidean spaces, spheres and hyperbolic spaces. Many energies, frequencies, capacities, eigenvalues, perimeters and function norms are shown to either decrease or increase under symmetrization. The book begins by focusing on Euclidean space, building up from two-point polarization with respect to hyperplanes. Background material in geometric measure theory and analysis is carefully developed, yielding self-contained proofs of all the major theorems. This leads to the analysis of functions defined on spheres and hyperbolic spaces, and then to convolutions, multiple integrals and hypercontractivity of the Poisson semigroup. The author's 'star function' method, which preserves subharmonicity, is developed with applications to semilinear PDEs. The book concludes with a thorough self-contained account of the star function's role in complex analysis, covering value distribution theory, conformal mapping and the hyperbolic metric.

Many extremal problems in mathematics and physics have symmetric solutions whose analytic and geometric properties often have elegant formulations. This book develops and applies symmetrization techniques in geometry, PDEs, and real and complex analysis. It will be a valuable reference, with self-contained treatments of all the major theorems.

Arvustused

'The book itself is a comprehensive and detailed study of the notion of symmetrization and is a welcome addition to existing literature on the subject. This book is a remarkable text collecting a variety of ideas in one unified framework; historical notes put the results in perspective. This book is very well written and will be useful to people working in a wide variety of fields.' Stefan Steinerberger, MathsSciNet

Muu info

Develops the modern theory of symmetrization including applications to geometry, PDEs, and real and complex analysis.
Foreword Walter Hayman; Preface David Drasin and Richard S. Laugesen; Introduction;
1. Rearrangements;
2. Main inequalities on Rn;
3. Dirichlet integral inequalities;
4. Geometric isoperimetric and sharp Sobolev inequalities;
5. Isoperimetric inequalities for physical quantities;
6. Steiner symmetrization;
7. Symmetrization on spheres, and hyperbolic and Gauss spaces;
8. Convolution and beyond;
9. The *-function;
10. Comparison principles for semilinear Poisson PDEs;
11. The *-function in complex analysis; References; Index.
Albert Baernstein, II was Professor in the Department of Mathematics at Washington University, St Louis before his death in 2014. He gained international renown for innovative solutions to extremal problems in complex and harmonic analysis. His invention of the 'star function' method in the 1970s prompted an invitation to the International Congress of Mathematicians held in Helsinki in 1978, and during the 1980s and 90s he substantially extended the breadth and applications of this method.