Muutke küpsiste eelistusi

E-raamat: Synchronization in Wireless Sensor Networks: Parameter Estimation, Performance Benchmarks, and Protocols

(Texas A & M University),
  • Formaat: PDF+DRM
  • Ilmumisaeg: 30-Jul-2009
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9780511590825
  • Formaat - PDF+DRM
  • Hind: 119,78 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 30-Jul-2009
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9780511590825

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Clock or time synchronization in wireless sensor network is a critical factor in network functioning due to the decentralized organization of wireless sensor networks and timing uncertainties caused by the imperfections in hardware oscillators and message delays at the physical and medium access control layers and is also important for such operations as power management, transmission scheduling, data fusion, localization and tracking, and security protocols, among others. In this work, Serpedin (Texas A&M U., US) and Chaudhari (Iqra U., Pakistan) provides an introduction to the clock synchronization of wireless sensor networks from a statistical signal processing viewpoint, with most topics therefore dealing with building efficient clock offset estimation algorithms and performance benchmarks for general synchronization approaches that rely on sender-receiver and receiver-receiver timing packet exchange mechanisms. They also present a summary of the key features of the most representative protocols proposed for clock synchronization of wireless sensor networks, as well as some open research problems. The material will be of use to practitioners looking for techniques to improve the performance of existing protocols such as network time protocol, time protocol for synchronization of sensor networks, reference broadcast synchronization, and pairwise broadcast synchronization, among others. Annotation ©2009 Book News, Inc., Portland, OR (booknews.com)

Presents the key clock synchronization protocols, emphasizing design and optimization techniques for building efficient estimation schemes and performance benchmarks.

Wireless sensor networks are set to play a key role in a wide range of civilian and military applications, with tiny sensors connected through wireless links performing various sensing, computing, communication, and control tasks in highly distributed systems. This book presents a critical element in the deployment of wireless sensor networks: the process of synchronization. It summarizes the most important clock synchronization protocols proposed for wireless sensor networks with special emphasis placed on deriving efficient clock offset estimation schemes and performance benchmarks. Graduate students of electrical and computer engineering and computer science will find this a valuable resource, as will engineers who are interested in designing efficient clock synchronization algorithms and improving the performance of existing synchronization protocols.

Muu info

Presents the key clock synchronization protocols, emphasizing design and optimization techniques for building efficient estimation schemes and performance benchmarks.
Preface xi
Introduction
1(9)
Wireless Sensor Networks
1(1)
Time Synchronization
2(1)
Importance of Time Synchronization
3(1)
History of Clock Synchronization
4(2)
Outline
6(4)
Signal Models for Time Synchronization
10(5)
Definition of Clock
10(1)
Design Considerations
11(2)
Delay Components in Timing Message Delivery
13(2)
Time Synchronization Protocols
15(17)
Pairwise Synchronization
16(5)
Timing-Sync Protocol for Sensor Networks (TPSN)
16(2)
Tiny-Sync and Mini-Sync
18(1)
Reference Broadcast Synchronization (RBS)
19(2)
Flooding Time Synchronization Protocol (FTSP)
21(1)
Network-Wide Synchronization
21(7)
Extension of TPSN
22(1)
Lightweight Time Synchronization (LTS)
22(1)
Extension of RBS
23(1)
Extension of FTSP
23(1)
Pairwise Broadcast Synchronization (PBS)
24(1)
Time Diffusion Protocol (TDP)
24(2)
Synchronous and Asynchronous Diffusion Algorithms
26(1)
Protocols Based on Pulse Transmissions
27(1)
Adaptive Time Synchronization
28(4)
Rate-Adaptive Time Synchronization (RATS)
28(1)
RBS-based Adaptive Clock Synchronization
29(1)
Adaptive Multi-Hop Time Synchronization (AMTS)
30(2)
Fundamental Approaches to Time Synchronization
32(10)
Sender-Receiver Synchronization (SRS)
33(3)
Receiver-Only Synchronization (ROS)
36(3)
Receiver-Receiver Synchronization (RRS)
39(2)
Comparisons
41(1)
Minimum Variance Unbiased Estimation (MVUE) of Clock Offset
42(20)
The System Architecture
43(2)
Best Linear Unbiased Estimation Using Order Statistics (BLUE-OS)
45(6)
Symmetric Link Delays
47(1)
Asymmetric Link Delays
48(3)
Minimum Variance Unbiased Estimation (MVUE)
51(6)
Asymmetric Link Delays
51(4)
Symmetric Link Delays
55(2)
Explanatory Remarks
57(5)
Clock Offset and Skew Estimation
62(28)
Gaussian Delay Model
63(6)
Maximum Likelihood (ML) Clock Offset Estimation
63(1)
Cramer-Rao Lower Bound (CRLB) for Clock Offset
64(1)
Joint Maximum Likelihood Estimation (JMLE) of Clock Offset and Skew
64(3)
Cramer-Rao Lower Bound (CRLB) for Clock Offset and Skew
67(2)
Exponential Delay Model
69(21)
Cramer-Rao Lower Bound (CRLB) for Clock Offset
70(3)
Joint Maximum Likelihood Estimation (JMLE) of Clock Offset and Skew
73(17)
Computationally Simplified Schemes for Estimation of Clock Offset and Skew
90(14)
Using the First and the Last Data Sample
91(8)
Gaussian Delay Model
91(1)
Exponential Delay Model
92(3)
Combination of Clock Offset and Skew Estimation
95(1)
Simulation Results
96(3)
Fitting the Line Between Two Points at Minimum Distance Apart
99(5)
Simulation Results
101(1)
Computational Complexity Comparison
102(2)
Pairwise Broadcast Synchronization (PBS)
104(14)
Synchronization for Single-Cluster Networks
105(1)
Comparisons and Analysis
105(2)
Synchronization for Multi-Cluster Networks
107(7)
Network-Wide Pair Selection Algorithm (NPA)
108(2)
Group-Wise Pair Selection Algorithm (GPA)
110(4)
Comparisons and Analysis
114(4)
Energy-Efficient Estimation of Clock Offset for Inactive Nodes
118(22)
Problem Formulation
119(2)
Maximum Likelihood Estimation (MLE)
121(11)
Cramer-Rao Lower Bound (CRLB)
132(6)
CRLB for the Clock Offset of Inactive Node &Phis;q
133(4)
CRLB for the Clock Offset of Active Node &Phis;p
137(1)
Simulation Results
138(2)
Some Improved and Generalized Estimation Schemes for Clock Synchronization of Inactive Nodes
140(17)
Asymmetric Exponential Link Delays
141(10)
Best Linear Unbiased Estimation Using Order Statistics (BLUE-OS)
142(3)
Minimum Variance Unbiased Estimation (MVUE)
145(4)
Minimum Mean Square Error (MMSE) Estimation
149(2)
Symmetric Exponential Link Delays
151(6)
Best Linear Unbiased Estimation Using Order Statistics (BLUE-OS)
151(2)
Minimum Variance Unbiased Estimation (MVUE)
153(2)
Minimum Mean Square Error (MMSE) Estimation
155(2)
Adaptive Multi-hop Time Synchronization (AMTS)
157(12)
Main Ideas
158(1)
Level Discovery Phase
159(1)
Synchronization Phase
159(1)
Network Evaluation Phase
160(7)
Synchronization Mode Selection
160(2)
Determination of Synchronization Period
162(2)
Determination of the Number of Beacons
164(1)
Sequential Multi-Hop Synchronization Algorithm (SMA)
164(3)
Simulation Results
167(2)
Clock Drift Estimation for Achieving Long-Term Synchronization
169(8)
Problem Formulation
170(1)
The Estimation Procedure
171(6)
Joint Synchronization or Clock Offset and Skew in a Receiver-Receiver Protocol
177(8)
Modeling Assumptions
177(1)
Joint Maximum Likelihood Estimation (JMLE) of the Offset and Skew
178(1)
Application of the Gibbs Sampler
179(2)
Performance Bounds and Simulations
181(4)
Robust Estimation of Clock Offset
185(26)
Problem Modeling and Objectives
187(2)
Gaussian Mixture Kalman Particle Filter (GMKPF)
189(3)
Testing the Performance of GMKPF
192(4)
Composite Particle Filtering (CPF) with Bootstrap Sampling (BS)
196(8)
Testing the Performance of CPF and CPF with BS
204(7)
Conclusions and Future Directions
211(3)
Acronyms 214(4)
References 218(9)
Index 227