Muutke küpsiste eelistusi

E-raamat: Synthesized Transmission Lines: Design, Circuit Implementation, and Phased Array Applications

  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 23-Nov-2016
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118975749
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 149,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 23-Nov-2016
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118975749
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

An original advanced level reference appealing to both the microwave and antenna communities

• An overview of the research activity devoted to the synthesis of transmission lines by means of electrically small planar elements, highlighting the main microwave applications and the potential for circuit miniaturization
• Showcases the research of top experts in the field
• Presents innovative topics on synthesized transmission lines, which represent fundamental elements in microwave and mm-wave integrated circuits, including on-chip integration
• Covers topics that are related to the microwave community (transmission lines), and topics that are related to the antenna community (phased arrays), broadening the readership appeal
Preface xi
1 Introduction to Synthesized Transmission Lines
1(25)
C. W. Wang
T. G. Ma
1.1 Introduction
1(1)
1.2 Propagation Characteristics of a TEM Transmission Line
2(5)
1.2.1 Wave Equations
2(3)
1.2.2 Keys to Miniaturization
5(2)
1.3 Analysis of Synthesized Transmission Lines
7(4)
1.3.1 Bloch Theorem and Characterization of a Periodic Synthesized Transmission Line
7(2)
1.3.2 Characterization of a Non-Periodic Synthesized Transmission Line
9(1)
1.3.3 Extraction of Line Parameters from S-Parameters
10(1)
1.4 Lumped and Quasi-Lumped Approaches
11(5)
1.4.1 Lumped Networks
11(3)
1.4.2 Shunt-Stub Loaded Lines
14(2)
1.5 One-Dimensional Periodic Structures
16(4)
1.5.1 Complementary-Conducting-Strip Lines
19(1)
1.6 Photonic Bandgap Structures
20(1)
1.7 Left-Handed Structures
21(5)
References
24(2)
2 Non-Periodic Synthesized Transmission Lines for Circuit Miniaturization
26(36)
C. W. Wang
T. G. Ma
2.1 Introduction
26(1)
2.2 Non-Periodic Synthesized Microstrip Lines and Their Applications
27(7)
2.2.7 Design Details and Propagation Characteristics
27(3)
2.2.2 90° and 180° Hybrid Couplers
30(2)
2.2.3 Application to Butler Matrix as Array Feeding Network
32(2)
2.3 Non-Periodic Synthesized Coplanar Waveguides and Their Applications
34(8)
2.3.1 Synthesis and Design
34(3)
2.3.2 180° Hybrid Using Synthesized CPWs
37(1)
2.3.3 Dual-Mode Ring Bandpass Filters
38(4)
2.4 Non-Periodic Quasi-Lumped Synthesized Coupled Lines
42(13)
2.4.1 Basics of Coupled Transmission Lines
42(2)
2.4.2 Miniaturization of Coupled Lines and the Directional Couplers
44(5)
2.4.3 Marchand Baluns Using Synthesized Coupled Lines
49(4)
2.4.4 Lumped Directional Coupler and the Phase Shifter
53(2)
2.5 Non-Periodic Synthesized Lines Using Vertical Inductors
55(7)
References
60(2)
3 Dual/Tri-Operational Mode Synthesized Transmission Lines: Design and Analysis
62(33)
C. H. Lai
T. G. Ma
3.1 Introduction
62(1)
3.2 Equivalent Circuit Models and Analysis
63(2)
3.2.1 Ladder-Type Approximation in the Passband
63(1)
3.2.2 Half-Circuit Model at Resonance
64(1)
3.3 Dual-Operational Mode Synthesized Transmission Lines
65(9)
3.3.1 Design Concept
65(1)
3.3.2 Dual-Mode Synthesized Line Using a Series Resonator
66(4)
3.3.3 Dual-Mode Synthesized Line Using Open-Circuited Stubs
70(2)
3.3.4 Dual-Mode Synthesized Line Using Parallel Resonators
72(2)
3.4 Tri-Operational Mode Synthesized Lines Using Series Resonators
74(13)
3.4.1 Design Concept
74(1)
3.4.2 Tri-Mode Synthesized Line as Category-1 Design
75(4)
3.4.3 Tri-Mode Synthesized Line as Category-2 Design
79(4)
3.4.4 Tri-Mode Synthesized Line as Category-3 Design
83(4)
3.5 Multi-Operational Mode Synthesized Lines as Diplexer and Triplexer
87(8)
3.5.1 Diplexer
87(2)
3.5.2 Triplexer
89(5)
References
94(1)
4 Applications to Heterogeneous Integrated Phased Arrays
95(31)
C. H. Lai
T. G. Ma
4.1 Introduction
95(1)
4.2 Dual-Mode Retrodirective Array
96(10)
4.2.1 Design Goal
96(1)
4.2.2 System Architecture
97(1)
4.2.3 Circuit Realization
98(4)
4.2.4 Bistatic Radiation Patterns
102(1)
4.2.5 Alternative Architecture
103(3)
4.3 Dual-Mode Integrated Beam-Switching/Retrodirective Array
106(9)
4.3.1 Design Goal
106(1)
4.3.2 System Architecture
106(3)
4.3.3 Circuit Realization
109(2)
4.3.4 Radiation Characteristics
111(1)
4.3.5 Complementary Design
111(4)
4.4 Tri-Mode Heterogeneous Integrated Phased Array
115(7)
4.4.1 Design Goal
115(1)
4.4.2 System Architecture
116(1)
4.4.3 Operation and System Implementation
117(2)
4.4.4 Circuit Responses and Radiation Patterns
119(1)
4.4.4.1 Beam-Switching Mode
120(2)
4.4.4.2 Van Atta Mode
122(1)
4.4.4.3 PCA Mode
122(1)
4.5 Simplified Dual-Mode Integrated Array Using Two Elements
122(4)
References
124(2)
5 On-Chip Realization of Synthesized Transmission Lines Using IPD Processes
126(42)
Y. C. Tseng
T. G. Ma
5.1 Introduction
126(1)
5.2 Integrated Passive Device (IPD) Process
127(1)
5.3 Tight Couplers Using Synthesized CPWs
128(14)
5.3.1 Quadrature Hybrid
128(1)
5.3.2 Wideband Rat-Race Coupler
129(3)
5.3.3 Dual-Band Rat-Race Coupler
132(5)
5.3.4 Coupled-Line Coupler
137(2)
5.3.5 Butler Matrix
139(3)
5.4 Bandpass/Bandstop Filters Using Synthesized CPWs
142(9)
5.4.1 Bandpass Filter Using Synthesized Stepped-Impedance Resonators
143(3)
5.4.2 Transformer-Coupled Bandpass Filter
146(1)
5.4.3 Bridged T-Coils as Common-Mode Filter
147(4)
5.5 Chip Designs Using Multi-Mode Synthesized CPWs
151(17)
5.5.1 Diplexer
151(3)
5.5.2 Dual-Mode Rat-Race Coupler
154(3)
5.5.3 Triplexer
157(4)
5.5.4 On-Chip Liquid Detector
161(5)
References
166(2)
6 Periodic Synthesized Transmission Lines with Two-Dimensional Routing
168(28)
T. G. Ma
6.1 Introduction
168(1)
6.2 Design of the Unit Cells
169(5)
6.2.1 Formulation
169(3)
6.2.2 Quarter-Wavelength Lines
172(2)
6.3 Power Divider and Couplers
174(4)
6.4 Broadside Directional Coupler
178(6)
6.4.1 Design Principle
178(2)
6.4.2 Circuit Realization
180(4)
6.5 Common-Mode Rejection Filter
184(5)
6.5.7 Design Principle
184(3)
6.5.2 Circuit Realization
187(2)
6.6 On-Chip Implementation
189(7)
6.6.7 Unit Cells and Quarter-Wavelength Lines
189(3)
6.6.2 Circuit Implementations and Compensation
192(2)
References
194(2)
Index 196
TZYH-GHUANG MA, National Taiwan University of Science and Technology, Taiwan

CHAO-WEI WANG, MediaTek Inc., Taiwan

CHI-HUI LAI, ASUSTeK Computer Inc., Taiwan

YING-CHENG TSENG, National Taiwan University, Taiwan