Muutke küpsiste eelistusi

E-raamat: System-level Techniques for Analog Performance Enhancement

  • Formaat: PDF+DRM
  • Ilmumisaeg: 13-Apr-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319279213
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 13-Apr-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319279213
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book shows readers to avoid common mistakes in circuit design, and presents classic circuit concepts and design approaches from the transistor to the system levels. The discussion is geared to be accessible and optimized for practical designers who want to learn to create circuits without simulations.  Topic by topic, the author guides designers to learn the classic analog design skills by understanding the basic electronics principles correctly, and further prepares them to feel confident in designing high-performance, state-of-the art CMOS analog systems.  This book combines and presents all in-depth necessary information to perform various design tasks so that readers can grasp essential material, without reading through the entire book.  This top-down approach helps readers to build practical design expertise quickly, starting from their understanding of electronics fundamentals.
1 Discrete-Time Switching Circuits
1(34)
1.1 Comparators
1(9)
1.1.1 Right, Wrong, or No Decision
2(1)
1.1.2 Non-Gaussian Comparator Error
3(3)
1.1.3 Digital Correction and Feedback
6(1)
1.1.4 Latch Gain
7(2)
1.1.5 Preamplifier Bandwidth
9(1)
1.2 Dynamic Amplifier and Latch
10(11)
1.2.1 Kickback in Dynamic Latch
15(2)
1.2.2 Latch Hysteresis and Metastability
17(1)
1.2.3 Transient Noise in Switching Circuits
18(3)
1.3 Analog Integrate and Dump
21(2)
1.4 Quantization Error vs. White Noise
23(1)
1.5 Noise Implications of Sampling
24(4)
1.6 Jitter and Transient Distortion
28(2)
1.7 DC Wandering
30(3)
1.8 Switching for Low Power
33(2)
References
34(1)
2 Continuous-Time Analog Circuits
35(34)
2.1 Negative and Positive Feedbacks
35(10)
2.1.1 Phase Margin
39(1)
2.1.2 Stability of Negative Feedback
40(4)
2.1.3 Instability of Positive Feedback
44(1)
2.2 Local Series and Shunt Feedbacks
45(12)
2.2.1 Series Feedback
46(1)
2.2.2 Source Follower
47(2)
2.2.3 Inductor Source Degeneration
49(2)
2.2.4 Resistance Reflection in Series Feedback
51(1)
2.2.5 Shunt Feedback
52(5)
2.3 Trans-Resistance Amplifier
57(8)
2.4 Gm Boosting and Noise Cancellation
65(4)
References
67(2)
3 Almost DC Circuits
69(24)
3.1 Regulator DC Performance
69(2)
3.2 Regulator Transient Performance
71(2)
3.3 Lossless Energy Transfer
73(2)
3.4 Switched-Capacitor DC--DC Converters
75(3)
3.5 Switched-Inductor DC--DC Converters
78(5)
3.6 Glitch in DC--DC Converters
83(2)
3.7 Almost DC Circuits for Body Sensors
85(8)
References
91(2)
4 Data-Converter Circuits
93(38)
4.1 Data Acquisition and Distribution
93(3)
4.2 Nyquist-Rate vs. Oversampling ADC
96(8)
4.2.1 Opamp-Based ADC
96(2)
4.2.2 Opamp-Free ADC
98(1)
4.2.3 Digital Correction and Feedback of Quantization Error
99(1)
4.2.4 Noise Implications in Data-Converter Circuits
100(2)
4.2.5 Nyquist-Rate SAR vs. Oversampling CT DSM
102(2)
4.3 Incremental DSM with DC Input
104(8)
4.3.1 IDSM with Input S/H
105(3)
4.3.2 Cascaded Integrators for DC Estimation
108(1)
4.3.3 Switched-Capacitor Charge Injector for Input S/H
109(1)
4.3.4 Initial Transient Error
110(2)
4.4 LMS-Based Adaptive Error Feedback
112(4)
4.4.1 Loop filter for Stability
113(1)
4.4.2 Self-Calibration vs. Self-Trimming
114(1)
4.4.3 Error Measurement by PN Dithering
115(1)
4.5 LMS-Based Adaptive Servo Feedback Examples
116(15)
4.5.1 Capacitor Self-Trimming
117(2)
4.5.2 Self-Trimming DACs
119(5)
4.5.3 Self-Trimming Time Constants
124(4)
References
128(3)
5 Switched-Capacitor Circuits
131(34)
5.1 Analog Sampled-Data Processing
131(1)
5.2 Opamp-Induced Gain Error
132(4)
5.3 Accurate Interstage Residue Transfer
136(2)
5.4 History of Opamp-Induced Gain Error Cancellation
138(1)
5.5 Nonlinearity-Cancelled Bottom-Plate Sampling
139(3)
5.6 LMS Adaptation for Gain and Nonlinearity Error
142(10)
5.6.1 Summing-Node Error Amplifier with Programmable Gain
144(2)
5.6.2 Gain Mismatch Polarity Detection by Digital Dithering
146(1)
5.6.3 Self-Trimming Sequence
147(3)
5.6.4 Accuracy Considerations
150(2)
5.7 Noise Implication of Nonlinearity Cancellation
152(2)
5.8 Effect of High-Frequency Zero on Settling
154(6)
5.9 Experimental Results
160(5)
References
163(2)
6 RF Circuits
165(30)
6.1 Mixer
165(4)
6.2 Sensitivity and Blocker
169(2)
6.3 Global AGC Feedback
171(2)
6.4 Impedance Matching
173(3)
6.5 Digital RF
176(2)
6.6 Switching Power Amplifier
178(4)
6.7 Fractional-N Frequency Synthesizer
182(13)
6.7.1 Fractional Spur
184(2)
6.7.2 DAC-Based Spur Cancellation
186(2)
6.7.3 LMS-Based DAC Gain Calibration
188(3)
6.7.4 Experimental Results
191(2)
References
193(2)
7 Direct-Conversion Receivers
195
7.1 Direct or Dual Conversion
195(1)
7.2 Frequency Translation
196(9)
7.2.1 Harmonic Mixing and Image Folding
198(3)
7.2.2 Harmonic Rejection
201(3)
7.2.3 Image Rejection
204(1)
7.3 Image in Direct-Conversion Receivers
205(15)
7.3.1 Complex Image
206(1)
7.3.2 Complex Image Rejection Algorithm
207(3)
7.3.3 Path Gain and Phase Error Detector
210(1)
7.3.4 Sign--Sign LMS Algorithm for Image Rejection
211(2)
7.3.5 Magnitude vs. Sign Detection
213(1)
7.3.6 Complex Image Rejection
214(2)
7.3.7 Three Variations of Image Rejecter
216(4)
7.4 Experimental Results
220
References
225
Bang-Sup Song received the B.S. from the Seoul National University in 1973, the M.S. from the Korea Advanced Institute of Science in 1975, and the Ph.D. from the University of California, Berkeley in 1983. From 1975 to 1978, Dr. Song was a research staff at Agency for Defense Development, Korea working on fire-control radars and spread-spectrum communications. From 1983 to 1986, he was a member of technical staff at AT&T Bell Laboratories, Murray Hill, and was also a visiting faculty member in the Department of Electrical Engineering, Rutgers University. From 1986 to 1999, he was a professor in the Department of Electrical and Computer Engineering and the Coordinated Science Laboratory, University of Illinois at Urbana. In 1999, he joined the faculty of the Department of Electrical and Computer Engineering, University of California, San Diego, where he is endowed with Charles Lee Powell Chair in Wireless Communication. Dr. Song received a Distinguished Technical Staff Awardfrom AT&T Bell Laboratories in 1986, a Career Development Professor Award from Analog Devices in 1987, and a Xerox Senior Faculty Research Award from the University of Illinois in 1995. His IEEE activities have been in the capacities of an Associate Editor, a Guest Editor, and a Program Committee Member for IEEE Transactions on Circuits and Systems, IEEE Journal of Solid-State Circuits, IEEE International Solid-State Circuits Conference, and IEEE Symposium on Circuits and Systems. Dr. Song is an IEEE Fellow.