Muutke küpsiste eelistusi

E-raamat: Systems Engineering of Phased Arrays

  • Formaat: 300 pages
  • Ilmumisaeg: 31-Jan-2018
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630814892
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 129,87 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 300 pages
  • Ilmumisaeg: 31-Jan-2018
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630814892
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Phased arrays, while traditionally used in radar systems, are now being used or proposed for use in internet of things (IoT) networks, high-speed back haul communication, terabit-per-second satellite systems, 5G mobile networks, and mobile phones. This book considers systems engineering of phased arrays and addresses not only radar, but also these modern applications. It presents a system-level perspective and approach that is essential for the successful development of modern phased arrays. Using practical examples, this book helps solve problems often encountered by technical professionals. Thermal management challenges, antenna element design issues, and architectures solutions are explored as well as the benefits and challenges of digital beam forming. This book provides the information required to train engineers to design and develop phased arrays and contains questions at the end of each chapter that professors will find useful for instruction.

Arvustused

Phased arrays, while traditionally used in radar systems, are now being used or proposed for use in internet of things (IoT) networks, high-speed back haul communication, terabit-per-second satellite systems, 5G mobile networks, and mobile phones. This book considers systems engineering of phased arrays and addresses not only radar, but also these modern applications. It presents a system-level perspective and approach that is essential for the successful development of modern phased arrays. * Stevo's Book Reviews *

Preface xvii
Acknowledgments xxi
Part I: System Engineering Activities 1(84)
1 The Systems Engineering Process and Its Application to Phased Arrays
3(26)
1.1 Introduction
3(1)
1.2 Methodological Reductionism
4(2)
1.3 The Systems Engineering Approach
6(1)
1.4 The Three-Phase Process
7(1)
1.5 Phase 1: Concept Development
8(12)
1.5.1 Needs Analysis
10(1)
1.5.2 Alternatives Exploration
11(3)
1.5.3 Trade Studies and Baseline Selection
14(2)
1.5.4 New Technology Validation
16(1)
1.5.5 Risk Management Plan
16(4)
1.5.6 Other Concept Development Activities
20(1)
1.6 Phase II: Engineering Development
20(4)
1.6.1 Typical Engineering Activities for Phased Arrays
21(1)
1.6.2 Antenna Development
21(1)
1.6.3 Integrated Circuit Development
21(1)
1.6.4 T/R Module Development
22(1)
1.6.5 Thermal Design and Heat Transfer Development
22(1)
1.6.6 Beamformer Development
22(1)
1.6.7 Digital Receiver/Exciter Development
22(1)
1.6.8 Mechanical Structure Development
23(1)
1.6.9 Production Plan Development
23(1)
1.6.10 Acceptance Testing
23(1)
1.6.11 Other Functions
23(1)
1.6.12 Outputs from Engineering Development
23(1)
1.7 Phase III: Post-Development
24(1)
1.7.1 Production
24(1)
1.7.2 Deployment
24(1)
1.7.3 Operation and System Maintenance
24(1)
1.7.4 Eventual Decommissioning
24(1)
1.8 Conclusions
25(1)
1.9 Problems
25(1)
References
25(4)
2 Phased Array System Architectures
29(26)
2.1 Introduction to Phased Array System Architectures
29(4)
2.2 Phased Array System Basics
33(7)
2.3 Phased Array Architectures
40(8)
2.3.1 Passive Phased Arrays
40(1)
2.3.2 AESA
41(1)
2.3.3 AESA with Phase Shifters at Each Element and at Each Subarray
42(4)
2.3.4 Element-Level Digital Beamforming
46(1)
2.3.5 Other Methods
47(1)
2.4 Array Architectures for T/R Module Integration
48(1)
2.5 Array Beamforming Options
49(2)
2.6 Polarization Diverse and Wideband Arrays
51(1)
2.7 Conclusions
51(1)
2.8 Problems
51(1)
References
52(3)
3 Use Cases for Phased Arrays
55(16)
3.1 Introduction to Use Cases
55(1)
3.2 High-Altitude Platform Station
56(4)
3.2.1 Introduction to HAPS
56(1)
3.2.2 HAPS System Description with Key Challenges and Benefits
57(3)
3.2.3 HAPS Examples and Summary
60(1)
3.3 Medical Applications of Phased Arrays
60(2)
3.3.1 Introduction to Medical Phased Arrays
60(1)
3.3.2 Medical Arrays System Description with Key Challenges and Benefits
61(1)
3.3.3 Medical Phased Array Examples and Summary
61(1)
3.4 Phased Array for 5G MIMO Broadband
62(3)
3.4.1 Introduction 5G Broadband Phased Arrays
62(1)
3.4.2 5G Phased Array System Description with Key Challenges and Benefits
63(1)
3.4.3 5G Phased Array Examples and Summary
64(1)
3.5 Airborne Radar for Fighter Aircraft
65(2)
3.5.1 Introduction to Military Phased Arrays
65(1)
3.5.2 Airborne Phased Array System Description with Key Challenges and Benefits
65(1)
3.5.3 Airborne Phased Array Examples and Summary
66(1)
3.6 Conclusions
67(1)
3.7 Problems
67(1)
References
68(3)
4 Phased Array Concept Development Example
71(14)
4.1 Introduction
71(1)
4.2 Needs Assessment-A Common Starting Point
72(1)
4.3 Technology Opportunities
73(1)
4.4 System Architecting
73(1)
4.5 The SAI Method for New System Concept Development
74(1)
4.6 Application of the Modified SAI Method to Broadband Access for Small to Medium-Size Public Venues
75(6)
4.6.1 Step 1: Determine Value Proposition and Constraints
76(1)
4.6.2 Step 2: Identification of Potential Perturbations
77(1)
4.6.3 Step 3: Identify Desired Ilities
77(1)
4.6.4 Step 4: Generate Function Alternatives
78(1)
4.6.5 Step 5: Generate Architecture Options
79(1)
4.6.6 Step 6: Select the "Best" Architecture Option
80(1)
4.7 Conclusions
81(1)
4.8 Problems
81(2)
References
83(2)
Part II: Detailed Development Activities 85(132)
5 Antenna Element Technology Options
87(46)
5.1 Introduction
87(1)
5.2 Based Concepts of Antennas
87(1)
5.3 Antenna Development Process
88(1)
5.4 Conventional Dipole
89(2)
5.5 Planar Inverted-F Antenna
91(8)
5.6 Meander Line Antenna
99(3)
5.7 Microstrip Patch Antennas
102(3)
5.8 Bowtie Dipole Antenna
105(3)
5.9 Waveguide Radiators
108(4)
5.10 Reflector Antenna
112(3)
5.11 Vivaldi Tapered Slotline Antenna
115(3)
5.12 Low-Profile Vivaldi Tapered Slot Antennas
118(3)
5.13 Tightly Coupled Dipole Array
121(1)
5.14 Conclusions
122(1)
5.15 Problems
123(2)
References
125(8)
6 Transmit/Receive Modules
133(26)
6.1 Introduction
133(1)
6.2 Technical Challenges Often Faced in T/R Module Development
133(3)
6.2.1 Heat Transfer
134(1)
6.2.2 Signal Integrity
134(1)
6.2.3 Integration with Other Functions
135(1)
6.2.4 Materials Compatibility
135(1)
6.2.5 Electromagnetic Coupling
136(1)
6.3 General Description of the T/R Module
136(2)
6.3.1 System Location of the T/R Module
136(1)
6.3.2 T/R Block Diagram
137(1)
6.4 T/R Module Detailed Description
138(12)
6.4.1 Low Noise Amplifier
138(5)
6.4.2 Low Noise Amplifier Protection
143(2)
6.4.3 High-Power Amplifier and Driver Amplifier
145(3)
6.4.4 Phase Shifter
148(1)
6.4.5 Duplexer
148(2)
6.5 T/R Module Manufacturing and Test
150(4)
6.5.1 Integrated Circuit Manufacturing
150(2)
6.5.2 Package Manufacturing
152(1)
6.5.3 Interconnects Types
153(1)
6.5.4 T/R Module Test
154(1)
6.6 Examples of T/R Modules
154(1)
6.6.1 A 3-D Ceramic T/R Module for Space-Based Applications
154(1)
6.6.2 T/R Module Using Laminate Circuit Board Technology
155(1)
6.6.3 60-GHz CMOS T/R Module Integrated with Antennas
155(1)
6.7 Conclusions
155(1)
6.8 Problems
156(1)
References
156(3)
7 Thermal Design, Heat Transfer Trade Studies, and Reliability
159(22)
7.1 Introduction
159(1)
7.2 Heat Transfer Fundamentals at the Integrated Circuit Level
160(6)
7.3 Reliability and MTTF
166(2)
7.4 Example: Millimeter-Wave SATCOM Front End
168(3)
7.5 Array Cooling Methods
171(5)
7.5.1 The Challenge of Phased Array Cooling
171(1)
7.5.2 Brick Array Cooling
172(3)
7.5.3 Tile Array Cooling
175(1)
7.6 Other Reliability Drivers for Phased Arrays
176(1)
7.7 Materials Used for Thermal Management
177(1)
7.8 Conclusions
177(1)
7.9 Problems
178(1)
References
179(2)
8 Analog versus Digital Beamforming
181(16)
8.1 Introduction
181(1)
8.2 Benefits and Challenges in Analog Beamforming
182(1)
8.3 Benefits and Challenges in Digital Beamforming
183(3)
8.4 Basic Digital Beamforming
186(2)
8.5 Adaptive Beamforming
188(2)
8.6 Errors in Beamforming and Their Effects
190(2)
8.7 Multiple Access Methods for 5G Phased Arrays
192(2)
8.7.1 Orthogonal Frequency Division Multiple Access
192(1)
8.7.2 Code Division Multiple Access
193(1)
8.7.3 Other Access Technologies
193(1)
8.8 Conclusions
194(1)
8.9 Problems
194(1)
References
195(2)
9 Digital Receiver Exciters
197(20)
9.1 Introduction
197(2)
9.2 Digital Receiver Architecture Options
199(1)
9.3 Example Trade Study on Digital Receiver Architecture
200(4)
9.4 Digital Exciter Architecture Options
204(1)
9.5 Main Components of a Digital Receiver Exciter
204(9)
9.5.1 Low Noise Amplifier
205(1)
9.5.2 Digital Attenuator
205(1)
9.5.3 Frequency Mixer
206(1)
9.5.4 Preselection, Image Rejection, and Antialiasing Filters
207(2)
9.5.5 Frequency Multipliers
209(3)
9.5.6 ADC
212(1)
9.6 Analysis of DRXs
213(1)
9.7 Conclusions
213(1)
9.8 Problems
214(1)
References
215(2)
Part III: System Modeling and Advanced Development Activities 217(58)
10 Phased Array System Modeling
219(44)
10.1 Introduction
219(1)
10.2 LFOV Receiver Array
220(5)
10.3 Multichannel Communication System Design
225(7)
10.4 Stripmap Synthetic Aperture Radar
232(8)
10.5 Radar Detection Performance
240(4)
10.6 Conclusions
244(1)
10.7 Problems
245(1)
References
245(1)
Appendix 10A: Excel Spreadsheet for the LFOV Array
246(2)
Appendix 10B: Scilab Code for the Communication System Receiver Array
248(6)
Appendix 10C: Scilab Code for the Stripmap SAR Simulation
254(3)
Appendix 10D: Gaussian ROC Curve Derivation
257(6)
11 Advanced Development Activities for Phased Arrays
263(12)
11.1 Introduction
263(2)
11.2 System Risk Management
265(2)
11.3 Advanced Development Activities
267(1)
11.4 Types of Advanced Development Risk Reduction Activities
268(1)
11.5 Typical Risks in Phased Array Development
269(2)
11.6 Advanced Development Impacts All Levels of the System
271(1)
11.7 Other Risk Analysis Topics
272(1)
11.8 Conclusions
272(1)
11.9 Problems
273(1)
References
274(1)
Conclusions 275(4)
About the Authors 279(2)
Index 281