Muutke küpsiste eelistusi

E-raamat: Systems of Transversal Sections Near Critical Energy Levels of Hamiltonian Systems in $\mathbb {R}^4$

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 103,43 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In this article the authors study Hamiltonian flows associated to smooth functions $H:\mathbb R^4 \to \mathbb R$ restricted to energy levels close to critical levels. They assume the existence of a saddle-center equilibrium point $p_c$ in the zero energy level $H^{-1}(0)$. The Hamiltonian function near $p_c$ is assumed to satisfy Moser's normal form and $p_c$ is assumed to lie in a strictly convex singular subset $S_0$ of $H^{-1}(0)$. Then for all $E \gt 0$ small, the energy level $H^{-1}(E)$ contains a subset $S_E$ near $S_0$, diffeomorphic to the closed $3$-ball, which admits a system of transversal sections $\mathcal F_E$, called a $2-3$ foliation. $\mathcal F_E$ is a singular foliation of $S_E$ and contains two periodic orbits $P_2,E\subset \partial S_E$ and $P_3,E\subset S_E\setminus \partial S_E$ as binding orbits. $P_2,E$ is the Lyapunoff orbit lying in the center manifold of $p_c$, has Conley-Zehnder index $2$ and spans two rigid planes in $\partial S_E$. $P_3,E$ has Conley-Zehnder index $3$ and spans a one parameter family of planes in $S_E \setminus \partial S_E$. A rigid cylinder connecting $P_3,E$ to $P_2,E$ completes $\mathcal F_E$. All regular leaves are transverse to the Hamiltonian vector field. The existence of a homoclinic orbit to $P_2,E$ in $S_E\setminus \partial S_E$ follows from this foliation.
Introduction
Proof of the main statement
Proof of Proposition 2.1
Proof of Proposition 2.2
Proof of Proposition 2.8
Proof of Proposition 2.9
Proof of Proposition 2.10-i)
Proof of Proposition 2.10-ii)
Proof of Proposition 2.10-iii)
Appendix A. Basics on pseudo-holomorphic curves in symplectizations
Appendix B. Linking properties
Appendix C. Uniqueness and intersections of pseudo-holomorphic curves
References
Naiara V. de Paulo, Cidade Universitaria, Sao Paulo, Brazil.

Pedro A. S. Salomao, Cidade Universitaria, Sao Paulo, Brazil.