Muutke küpsiste eelistusi

E-raamat: Telecommunication Networks

(Dianax s.r.l. CEO and Founder, Milano, Italy)
  • Formaat - EPUB+DRM
  • Hind: 100,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Preface The telecommunication infrastructure is perhaps the most impressive network developed by humankind. Almost all the technical knowledge forming the basic human know-how is exploited in the telecommunication network: from quantum field theory needed to study optical amplifier noise to software architectures adopted to design the control software of the network, from abstract algebra used in error correcting codes and in network design algorithms to thermal and mechanical modeling adopted in the design of telecommunication equipment platforms. The network is present almost everywhere in the world, allowing seamless communication of sounds and images through a chain of different types of equipment produced by several equipment vendors. Communicationis carried out smoothly not only in normal conditions, but its quality is also monitored continuously, allowing it to survive failure of individual components and even to maintain a certain degree of functionality in case of catastrophic events like earthquakes. The aim of this book is to present the telecommunication network as a whole, adopting a practical approach that does not evidence only recent developments and research directions, but also engineering subjects and key market needs that are no less important in guaranteeing the network operation standard. The great attention to standardization, both in the description of standards and in the bibliography, is "an" before "integral" part of this strategy. The only area not covered by this book, out of a generic discussion, is constituted by radio systems. Considering that cellular systems are part of the access area and that radio bridges are used only in emergency situations out of the access area, this mainly impacts the way in which access to thenetwork is"--

"The book outlines the current situation of the telecommunication network and the different alternatives for network evolution. It provides a systematic view of the network design problem, underlining its links between different aspects. It presents the engineering knowledge needed to construct a network evolution strategy, examines the elements influencing telecommunications network evolution and their interdependence, and supplies a complete review of the architecture alternatives. The content ranges from high level architectural elements to component physics, with a focus on enlightening the same problem from different points of view"--

Provided by publisher.
Preface xvii
Author xix
1 Introduction
1(4)
1.1 Book Content and Organization
1(2)
1.2 Using This Book
3(2)
Acknowledgments
3(2)
2 Drivers for Telecommunication Network Evolution
5(30)
2.1 Market of Telecom Carriers
5(20)
2.1.1 Customer Base Impact on the Economics of Carriers
12(2)
2.1.2 Broadband Services
14(4)
2.1.3 Seamless Fixed and Mobile Service Convergence
18(1)
2.1.4 Prices Fall and Overall Market Scenario
19(3)
2.1.5 Telecommunication Market Value Chain
22(3)
2.2 Requirements for Next Generation Networks
25(10)
2.2.1 Network Operational Costs
25(1)
2.2.2 Requirements for Next Generation Equipment
26(2)
2.2.3 Requirements for Next Generation Network Control Plane
28(2)
2.2.4 Summary of Requirements for Next Generation Networks
30(1)
References
31(4)
3 Networks Fundamentals and Present Architectures
35(100)
3.1 Network Infrastructure Architecture
35(9)
3.1.1 Network Topology
35(3)
3.1.2 Access Network Architecture
38(4)
3.1.3 Metro Network and Core Network Architectures
42(2)
3.2 Network Functional Architecture
44(58)
3.2.1 Core Network Vertical Architecture
44(1)
3.2.1.1 Service Network
45(1)
3.2.1.2 Packet Network
46(3)
3.2.1.3 Transport Network
49(3)
3.2.1.4 Control Plane and Management Plane
52(2)
3.2.2 Network Layering
54(4)
3.2.3 Internet
58(3)
3.2.3.1 Transport Layer: Transmission Control Protocol
61(2)
3.2.3.2 Transport Layer: User Datagram Protocol
63(1)
3.2.3.3 Internet Layer: Internet Protocol
64(2)
3.2.4 Carrier Class Ethernet
66(3)
3.2.4.1 Protocols to Support Management Functionalities
69(1)
3.2.4.2 QoS and Resilience
70(1)
3.2.4.3 Scalability
71(2)
3.2.5 Multi-Protocol Label Switching
73(3)
3.2.6 Synchronous Optical Network (SDH/SONET)
76(9)
3.2.7 Optical Transport Network (OTN)
85(1)
3.2.7.1 Optical Channel Layer
85(1)
3.2.7.2 Optical Multiplex Section
85(11)
3.2.8 Telecommunication Management Network
96(1)
3.2.8.1 Embedded Software Layer
97(1)
3.2.8.2 Element Management Layer
98(1)
3.2.8.3 Network Management Layer
98(2)
3.2.8.4 Service Management Layer
100(1)
3.2.8.5 Business Management Layer
100(1)
3.2.9 Central Management in IP Networks
101(1)
3.3 Network Convergence over IP
102(12)
3.3.1 Packet over SDH/SONET Model
103(3)
3.3.2 IP over Next Generation SONET/SDH
106(1)
3.3.2.1 General Framing Procedure
106(2)
3.3.2.2 Virtual Concatenation
108(1)
3.3.2.3 Dynamic Bandwidth Allocation
109(1)
3.3.3 IP over MPLS over OTN
110(3)
3.3.4 IP over Ethernet over OTN
113(1)
3.4 Comparison among Different Core Architectures
114(21)
3.4.1 Architectures Functional Comparison
114(1)
3.4.1.1 Framing Efficiency
114(2)
3.4.1.2 Network Scalability: Core Network
116(1)
3.4.1.3 Network Scalability: Metro Network
117(1)
3.4.1.4 Network Survivability
118(1)
3.4.2 Network Dimensioning and Cost Estimation
119(2)
3.4.3 Test Networks and Traffic Model
121(1)
3.4.4 Cost Comparison
122(5)
References
127(8)
4 Technology for Telecommunications: Optical Fibers, Amplifiers, and Passive Devices
135(84)
4.1 Introduction
135(1)
4.2 Optical Fibers for Transmission
136(36)
4.2.1 Single-Mode Transmission Fibers
136(2)
4.2.2 Fiber Losses
138(1)
4.2.2.1 Coupling Losses
139(1)
4.2.2.2 Propagation Losses
139(2)
4.2.3 Linear Propagation in an Optical Fiber
141(1)
4.2.4 Fiber Chromatic Dispersion
142(6)
4.2.5 Polarization Mode Dispersion
148(4)
4.2.6 Nonlinear Propagation in Optical Fibers
152(2)
4.2.7 Kerr Effect
154(1)
4.2.7.1 Kerr-Induced Self-Phase Modulation
155(2)
4.2.7.2 Kerr-Induced Cross-Phase Modulation
157(1)
4.2.7.3 Kerr-Induced Four-Wave Mixing
157(2)
4.2.8 Raman Scattering
159(1)
4.2.9 Brillouin Scattering
160(3)
4.2.10 ITU-T Fiber Standards
163(2)
4.2.11 Polarization Maintaining and Other Special Telecom Fibers
165(4)
4.2.12 Fiber Cables
169(3)
4.3 Optical Fiber Amplifiers
172(35)
4.3.1 Basic Theory of Optical Amplifiers
172(1)
4.3.1.1 Quantum Noise
172(2)
4.3.1.2 Stationary Behavior of a Two-Level Amplifier
174(4)
4.3.1.3 Dynamic Behavior of a Two-Level Amplifier
178(3)
4.3.1.4 Amplifiers Functional Classification and Multistage Amplifiers
181(6)
4.3.2 Erbium-Doped Fiber Amplifiers
187(7)
4.3.3 Raman Fiber Amplifiers
194(11)
4.3.4 Hybrid Raman-EDFA Amplifiers
205(2)
4.4 Optical Filters
207(12)
4.4.1 Fixed Wavelength Optical Filters
208(1)
4.4.1.1 Grating Filters
208(1)
4.4.1.2 Fiber Bragg Gratings
208(1)
4.4.1.3 Thin-Film Interference Filters
209(1)
4.4.2 Tunable Optical Filters
209(1)
4.4.2.1 Etalon
209(1)
4.4.2.2 Mach Zehnder Interferometer
210(1)
4.4.2.3 Microrings Filters
211(1)
4.4.3 WDM Multiplexers and Demultiplexers
212(2)
References
214(5)
5 Technology for Telecommunications: Integrated Optics and Microelectronics
219(110)
5.1 Introduction
219(1)
5.2 Semiconductor Lasers
220(29)
5.2.1 Fixed-Wavelength Edge-Emitting Semiconductor Lasers
220(1)
5.2.1.1 Semiconductor Laser Principle
220(3)
5.2.1.2 Semiconductor Laser Modeling and Dynamic Behavior
223(7)
5.2.1.3 Quantum Well Lasers
230(1)
5.2.1.4 Source Fabry-Perot Lasers
230(1)
5.2.1.5 Source DFB Lasers
231(3)
5.2.2 High-Power Pump Lasers
234(2)
5.2.3 Vertical Cavity Surface-Emitting Lasers
236(3)
5.2.4 Tunable Lasers
239(1)
5.2.4.1 Multisection Widely Tunable Lasers
240(4)
5.2.4.2 External Cavity Lasers
244(4)
5.2.4.3 Laser Arrays
248(1)
5.3 Semiconductor Amplifiers
249(1)
5.4 PIN and APD Photodiodes
250(3)
5.5 Optical Modulation Devices
253(9)
5.5.1 Mach-Zehnder Modulators
253(4)
5.5.2 Electro-Absorption Modulators
257(2)
5.5.3 Integrated Optical Components
259(1)
5.5.3.1 Electrons and Photons in Planar Integrated Circuits
260(1)
5.5.3.2 Digital and Analog Planar Integrated Circuits
260(1)
5.5.3.3 Role of Packaging
260(1)
5.5.3.4 Integrated Optics Cost Scaling with Volumes
261(1)
5.5.3.5 Integrated Planar III-V Components
262(1)
5.6 Optical Switches
262(6)
5.6.1 Micromachining Electromechanical Switches (MEMS)
263(3)
5.6.2 Liquid Crystals Optical Switches
266(1)
5.6.3 Wavelength-Selective Switches
267(1)
5.7 Electronic Components
268(16)
5.7.1 Development of CMOS Silicon Technology
268(2)
5.7.1.1 CMOS Speed Evolution up and beyond the 32nm Node
270(3)
5.7.1.2 CMOS Single-Switch Power Consumption
273(1)
5.7.1.3 CMOS Circuit Cost Trends
274(1)
5.7.2 Application-Specific Integrated Circuits
275(2)
5.7.3 Field Programmable Gate Array
277(1)
5.7.3.1 Programmable Connection Network
277(1)
5.7.3.2 Logic Block
278(1)
5.7.3.3 FPGA Performances
278(2)
5.7.4 Digital Signal Processor
280(1)
5.7.4.1 DSP Hardware Architecture
281(1)
5.7.4.2 DSP-Embedded Instruction Set
282(1)
5.7.4.3 DSP Performances
283(1)
5.8 Electronics for Transmission and Routing
284(30)
5.8.1 Low-Noise Receiver Front End
284(3)
5.8.2 Distortion Compensation Filters
287(1)
5.8.3 Electronic Dispersion Post-Compensation
288(1)
5.8.3.1 Feed-Forward/Decision Feedback Equalizer
288(4)
5.8.3.2 Maximum Likelihood Sequence Estimation Equalizers
292(3)
5.8.4 Pre-Equalization and Pre-Distortion Equalizers
295(3)
5.8.5 Forward Error Correction
298(1)
5.8.5.1 FEC Definition and Functionalities
298(2)
5.8.5.2 BCH and the Reed-Solomon Codes
300(1)
5.8.5.3 Turbo Codes
301(3)
5.8.5.4 ITU-T OTN Standard and Advanced FEC
304(2)
5.8.5.5 FEC Performances
306(5)
5.8.6 Content Addressable Memories
311(3)
5.9 Interface Modules and Transceivers
314(15)
5.9.1 MSA Transmitting-Receiving Modules
316(2)
5.9.2 Transceivers for Carrier-Class Transmission
318(1)
5.9.2.1 SFP Transceivers for Telecommunications
318(2)
5.9.2.2 XFP Transceivers for Telecommunications
320(3)
References
323(6)
6 Transmission Systems Architectures and Performances
329(108)
6.1 Introduction
329(1)
6.2 Intensity Modulation and Direct Detection Transmission
330(30)
6.2.1 Fiber-Optic Transmission Systems
330(1)
6.2.1.1 Wavelength Division Multiplexing
331(1)
6.2.1.2 Transmission System Performance Indicators
331(2)
6.2.2 Ideal IM-DD Transmission
333(3)
6.2.3 Analysis of a Realistic Single-Channel IM-DD System
336(1)
6.2.3.1 Evaluation of the BER in the Presence of Channel Memory
337(1)
6.2.3.2 NRZ Signal after Propagation
337(3)
6.2.3.3 RZ Signal after Propagation
340(2)
6.2.3.4 Realistic Receiver Noise Model
342(2)
6.2.3.5 Performance Evaluation of an Unrepeated IM-DD System
344(1)
6.2.4 Performance of Non-Regenerated NRZ Systems
345(3)
6.2.4.1 Dispersion-Compensated NRZ IM-DD Systems
348(4)
6.2.5 Performance of Non-Regenerated Return to Zero Systems
352(2)
6.2.6 Unrepeated Wavelength Division Multiplexing Systems
354(1)
6.2.6.1 Linear Interference in Wavelength Division Multiplexing Systems
355(2)
6.2.6.2 Nonlinear Interference in Wavelength Division Mutiplexing Systems
357(2)
6.2.6.3 Jitter, Unperfected Modulation, Laser Linewidth, and Other Impairments
359(1)
6.3 Intensity Modulation and Direct Detection Systems Using Optical Amplifiers
360(57)
6.3.1 Long-Haul and Ultra-Long-Haul Transmission: Performance Evaluation
361(11)
6.3.2 Design of Long-Haul Transmission Systems
372(1)
6.3.2.1 Erbium-Doped Optical Fiber Amplifier Amplified Systems Design
373(10)
6.3.2.2 Long-Haul Transmission at 40 Gbit/s
383(2)
6.3.2.3 Long-Haul Transmission: Realistic Systems Characteristics
385(1)
6.3.3 Design of Ultra-Long-Haul Transmission Systems
385(2)
6.3.3.1 Ultra-Long-Haul Transmission at 10 Gbit/s: Draft Design
387(5)
6.3.3.2 Ultra-Long-Haul Transmission Systems: Penalties, Evaluation, and Simulation Results
392(2)
6.3.3.3 Ultra-Long-Haul Transmission at 40 Gbit/s
394(2)
6.3.3.4 Ultra-Long-Haul Systems with Electronic Pre-Compensation
396(1)
6.3.4 Single-Span Systems
397(1)
6.3.4.1 Single-Span Systems with Intensity Modulation and All Raman Amplification
397(5)
6.3.4.2 Single-Span Systems with Differential Phase Shift Keying Transmission and Raman Amplification
402(7)
6.3.4.3 Single-Span Systems with Electronic Pre-Distortion at 10 Gbit/s
409(1)
6.3.5 Metropolitan Optical Rings
410(2)
6.3.5.1 Transmission in Dense Wavelength Division Multiplexing Metropolitan Ring
412(4)
6.3.5.2 Transmission in Coarse Wavelength Division Multiplexing Metropolitan Ring
416(1)
6.4 Alternative Modulation Formats
417(2)
6.4.1 Single Side Band Modulation
418(1)
6.4.2 Duobinary Modulation
418(1)
6.5 Hardware Architecture of Optical Transmission Systems
419(18)
6.5.1 Mechanical Structure of a Dense Wavelength Division Multiplexing System
420(3)
6.5.1.1 Signal Cards
423(1)
6.5.1.2 Support Cards
424(1)
6.5.1.3 Control Cards
424(1)
6.5.1.4 Redundancies
425(1)
6.5.2 Backplane Architecture
425(4)
6.5.3 Backplane Bus Protocols
429(1)
6.5.4 System Thermal Design
430(4)
References
434(3)
7 Switching Systems: Architecture and Performances
437(102)
7.1 Introduction
437(1)
7.2 Space Division Switch Fabrics
438(17)
7.2.1 Crossbar Switch Fabrics
442(2)
7.2.2 Clos Switch Fabric
444(1)
7.2.2.1 Strictly Nonblocking Clos Networks
445(1)
7.2.2.2 Rearrangeable Nonblocking Clos Networks
446(1)
7.2.2.3 Blocking Clos Networks
446(2)
7.2.2.4 Control of a Clos Switch
448(1)
7.2.2.5 Dimensions and Power Consumption
449(1)
7.2.2.6 Clos Switch Fabric Modularity
450(1)
7.2.3 Banyan Switch Fabric
451(2)
7.2.3.1 Routing through a Banyan Network
453(1)
7.2.3.2 Modularity of a Banyan Network
454(1)
7.2.3.3 Real Estate and Power Consumption of a Banyan Network
454(1)
7.2.3.4 Variation on Basic Banyan Networks
454(1)
7.3 Time Division Switch Fabrics
455(15)
7.3.1 Time Slot Interchange-Based Switch Fabrics
455(3)
7.3.2 Bus-Based Switch Fabrics
458(1)
7.3.2.1 Switch Fabric Based on a Slotted Random Access Bus
459(2)
7.3.2.2 Switch Fabric Based on an Unslotted Random Access Bus
461(1)
7.3.2.3 Switch Fabric Based on a Carrier Sense Multiple Access Bus
462(3)
7.3.2.4 Switch Fabric Based on Variations of the Carrier Sense Multiple Access Bus
465(2)
7.3.3 Delay in Bus-Based Switch Fabrics
467(3)
7.4 Wavelength Division Switch Fabrics
470(2)
7.5 Hardware Platforms for Switching Network Elements
472(9)
7.5.1 Fast Backplanes for Switching Equipment
473(1)
7.5.1.1 High-Speed Electrical Backplanes
474(2)
7.5.1.2 Optical Backplane
476(1)
7.5.1.3 Optical Backplanes Based on Monolithic Optical Integration
477(1)
7.5.1.4 Protocols for Very High-Speed Backplanes
477(1)
7.5.2 Platform Volume Value
478(3)
7.6 On the Performances of Core Switching Machines
481(5)
7.6.1 Capacity, Throughput, and Channel Utilization
481(2)
7.6.2 Scalability
483(1)
7.6.3 Interface Cards Density
483(1)
7.6.4 Power Consumption
484(1)
7.6.5 Availability
485(1)
7.7 Circuit Switching in the Transport Layer
486(25)
7.7.1 Connection Switching
486(1)
7.7.2 Connection Management
487(1)
7.7.3 Connection Survivability
487(1)
7.7.4 Optical Cross Connect
487(1)
7.7.4.1 OXCs with WDM or Gray Interfaces
488(2)
7.7.4.2 OXC with an Electronic Switch Fabric
490(2)
7.7.4.3 OXC with an Optical Switch Fabric
492(6)
7.7.5 Optical Add-Drop Multiplexer
498(7)
7.7.6 Add-Drop Multiplexer
505(6)
7.8 Packet Switching at MPLS and IP Layers: Routers
511(20)
7.8.1 Generalities on IP/MPLS Routers and Routers Classification
512(4)
7.8.2 IP Routers Architectur
516(4)
7.8.3 Routing Tables Lookup
520(1)
7.8.3.1 Binary Trie-Based Algorithms
521(2)
7.8.3.2 Hardware-Based Algorithms
523(1)
7.8.3.3 Comparison between Forwarding Table Lookup Algorithms
524(1)
7.8.4 Broadband Remote Access Servers and Edge Routers
525(1)
7.8.5 Practical Routers Implementations
526(5)
7.9 Packet Switching at Ethernet Layer: Carrier Class Ethernet Switches
531(8)
7.9.1 Generalities on Carrier Class Ethernet Switches
531(2)
7.9.2 Architecture of a Carrier Class Ethernet Switch
533(1)
References
533(6)
8 Convergent Network Management and Control Plane
539(94)
8.1 Introduction
539(1)
8.2 ASON Architecture
540(13)
8.2.1 ASON Network Model
540(6)
8.2.2 ASON Standard Interfaces
546(2)
8.2.3 ASON Control Plane Functionalities
548(1)
8.2.3.1 Discovery
548(2)
8.2.3.2 Routing
550(1)
8.2.3.3 Signaling
551(1)
8.2.3.4 Call and Connection Control
551(1)
8.2.3.5 Survivability
551(2)
8.3 GMPLS Architecture
553(20)
8.3.1 GMPLS Data Paths and Generalized Labels Hierarchy
555(2)
8.3.2 GMPLS Protocol Suite
557(1)
8.3.2.1 Open Shortest Path First with Traffic Engineering
558(2)
8.3.2.2 IS-IS Routing Protocol
560(3)
8.3.2.3 Brief Comparison between OSPF-TE and IS-IS
563(1)
8.3.2.4 Resource Reservation Protocol with Traffic Engineering Extensions
564(5)
8.3.2.5 Constrained Routing Label Distribution Protocol
569(1)
8.3.2.6 Comparison between RSVP-TE and CR-LDP
570(1)
8.3.2.7 Line Management Protocol
571(2)
8.4 Design and Optimization of ASON/GMPLS Networks
573(31)
8.4.1 Detailed Example: Design Target and Issues
573(2)
8.4.1.1 Basic Examples of Network Design
575(4)
8.4.1.2 Design for Survivability
579(6)
8.4.2 Design Based on Optimization Algorithms
585(1)
8.4.2.1 Optimized Design Hypotheses
585(2)
8.4.2.2 Network Model for ILP
587(9)
8.4.2.3 ILP Design Complexity
596(3)
8.4.2.4 Design in Unknown Traffic Conditions
599(2)
8.4.3 Routing Policies-Based Design
601(1)
8.4.3.1 OSPF Protocol
602(1)
8.4.3.2 Constrained Routing
603(1)
8.4.3.3 Comparison among the Considered Algorithms
603(1)
8.5 GMPLS Network Design for Survivability
604(17)
8.5.1 Survivability Techniques Performance Evaluation
606(5)
8.5.2 Protection versus Restoration
611(1)
8.5.2.1 Bandwidth Usage
612(1)
8.5.2.2 Recovery Time
612(1)
8.5.2.3 Specific Protocols
612(1)
8.5.2.4 QoS Issues
612(1)
8.5.2.5 Quantitative Comparison
612(3)
8.5.3 Multilayer Survivability Strategies
615(1)
8.5.3.1 Multilayer Survivability
615(2)
8.5.3.2 QoS-Driven Multilayer Survivability
617(4)
8.6 Impact of ASON/GMPLS on Carriers OPEX
621(12)
References
628(5)
9 Next Generation Transmission Systems Enabling Technologies, Architectures, and Performances
633(98)
9.1 Introduction
633(1)
9.2 100Gbit/s Transmission Issues
634(17)
9.2.1 Optical Signal to Noise Ratio Reduction
634(3)
9.2.2 Fiber Chromatic Dispersion
637(1)
9.2.2.1 Impact of Chromatic Dispersion on 100Gbit/s Transmission
637(1)
9.2.2.2 Tunable Optical Dispersion Compensator
638(5)
9.2.3 Fiber Polarization Mode Dispersion
643(1)
9.2.3.1 Impact of Polarization Mode Dispersion on 100Gbit/s Transmission
643(1)
9.2.3.2 Polarization Mode Dispersion Compensation
644(5)
9.2.4 Other Limiting Factors
649(1)
9.2.4.1 Fiber Nonlinear Propagation
649(1)
9.2.4.2 Timing Jitter
650(1)
9.2.4.3 Electrical Front End Adaptation
651(1)
9.3 Multilevel Optical Transmission
651(44)
9.3.1 Optical Instantaneous Multilevel Modulation
652(2)
9.3.2 Practical Multilevel Transmitters
654(1)
9.3.2.1 Multilevel Differential Phase Modulation (M-DPSK)
654(1)
9.3.2.2 Multilevel Quadrature Amplitude Modulation (M-QAM)
655(3)
9.3.2.3 Multilevel Polarization Modulation (M-PolSK)
658(5)
9.3.2.4 Multilevel Four Quadrature Amplitude Modulation (M-4QAM)
663(3)
9.3.3 Multilevel Modulation Receivers
666(1)
9.3.3.1 Four Quadrature Receiver
667(7)
9.3.3.2 M-DPSK Optimum Receiver
674(1)
9.3.3.3 M-PolSK Receivers
675(4)
9.3.4 Ideal Performances of Multilevel Systems
679(5)
9.3.4.1 M-QAM and M-4QAM with Quadrature Receiver
684(2)
9.3.4.2 M-PolSK with Stokes Parameters Receiver
686(2)
9.3.4.3 M-DPSK with Direct Detection Receiver
688(1)
9.3.4.4 Comparison among Different Modulation Formats
689(1)
9.3.5 Coherent Receivers Sensitivity to Phase and Polarization Fluctuations
690(1)
9.3.5.1 Phase Noise Penalty for Coherent Quadrature Receiver
690(4)
9.3.5.2 Depolarization Penalty for Coherent Quadrature Receiver
694(1)
9.4 Alternative and Complementary Transmission Techniques
695(3)
9.4.1 Orthogonal Frequency Division Multiplexing
696(1)
9.4.2 Polarization Division Multiplexing
697(1)
9.4.3 Channel and Pulse Polarization Diversity
697(1)
9.5 Design Rules for 100Gbit/s Long Haul Transmission Systems
698(25)
9.5.1 Practical Multilevel Systems: Transmitting 100Gbit/s on a 40Gbit/s Line
698(1)
9.5.1.1 Power Budget
699(1)
9.5.1.2 Penalty Analysis
700(4)
9.5.2 Practical Multilevel Systems: Transmitting 100Gbit/s on a 10Gbit/s Line by 4QAM
704(1)
9.5.2.1 Ideal Signal to Noise Ratio Requirements
705(1)
9.5.2.2 Penalties Analysis
706(3)
9.5.3 Practical Multilevel Systems: Transmitting 100Gbit/s on a 10Gbit/s Line by PolSK
709(1)
9.5.3.1 Draft Design and Power Budget
709(3)
9.5.3.2 Penalties Analysis
712(6)
9.5.4 Practical Multilevel Systems: Native 100Gbit/s Ultra-Long Haul Systems
718(1)
9.5.4.1 Draft Design
718(1)
9.5.4.2 Penalties Analysis
719(4)
9.6 Summary of Experimental 100Gbit/s Systems Characteristics
723(8)
References
725(6)
10 Next Generation Networking: Enabling Technologies, Architectures, and Performances
731(76)
10.1 Introduction
731(2)
10.1.1 Digital Optical Network
731(1)
10.1.2 Optical Transparent Network
732(1)
10.1.3 Optical Packet Network
732(1)
10.2 Optical Digital Network
733(10)
10.2.1 Optoelectronic Integration: ODN Enabling Technology
734(4)
10.2.2 Optical Digital Network Architecture and Design
738(1)
10.2.2.1 ODN Control and Management Plane
738(1)
10.2.2.2 ODN Physical Layer Sub-Layering
739(2)
10.2.2.3 ODN Network Elements and Data Plane
741(2)
10.3 Transparent Optical Transport Network
743(43)
10.3.1 Enabling Technologies for the Transparent Optical Transport Network
745(1)
10.3.1.1 Nonlinear Behavior of Semiconductor Amplifiers
746(1)
10.3.1.2 Wavelength Converters and Regenerators Based on Cross-Gain Modulation
747(2)
10.3.1.3 Wavelength Converters and Regenerators Based on Cross-Phase Modulation
749(2)
10.3.1.4 Wavelength Converters Based on Four-Wave Mixing
751(2)
10.3.2 Transparent Optical Network Elements
753(4)
10.3.2.1 PWP Transparent OXC: Example of Performances
757(1)
10.3.2.2 PWC Transparent OXC: Example of Performances
758(1)
10.3.2.3 LWC Transparent OXC: Example of Performances
759(2)
10.3.2.4 Final Comparison
761(1)
10.3.3 Transport of Control Plane and Management Plane Messages
762(1)
10.3.3.1 Pilot Tones
762(2)
10.3.3.2 Low Frequency Subcarrier Modulated Data Channel
764(1)
10.3.3.3 Optical Code Division Multiplexing
764(3)
10.3.4 Design of a Transparent Optical Network: ILP Optimization
767(1)
10.3.4.1 Integer Linear Programming to Dimension Transparent Optical Transport Networks
767(1)
10.3.4.2 Problem of Wavelength Routing and the Use of Wavelength Converters
768(1)
10.3.4.3 Problem of Transmission Impairments and the Use of Regenerators
769(3)
10.3.5 Cyclic-Based Design Algorithms and Wavelength Converters Placement
772(1)
10.3.5.1 Full Wavelength Conversion Cyclic Algorithm
772(2)
10.3.5.2 No Wavelength Conversion Cyclic Algorithm
774(1)
10.3.5.3 Partial Wavelength Conversion Cyclic Algorithm
775(1)
10.3.5.4 Cost Model and Transmission Feasibility in Cyclic Algorithms
776(1)
10.3.5.5 Example of Network Design and Role of Wavelength Converters
777(4)
10.3.6 Translucent Optical Network: Design Methods and Regenerators Placing Problem
781(4)
10.3.7 Summary: The Transparent Optical Network Status
785(1)
10.4 Transparent Optical Packet Network (T-OPN)
786(21)
10.4.1 Transparent Optical Packet Network Enabling Technologies
789(1)
10.4.1.1 Optical Memories
789(4)
10.4.1.2 Switches: Two Examples of All-Optical Switch Fabric
793(3)
10.4.1.3 Digital Optical Processing
796(6)
10.4.2 Final Comment on the All-Optical Packet Network
802(1)
References
803(4)
11 The New Access Network Systems and Enabling Technologies
807(32)
11.1 Introduction
807(1)
11.2 TDMA and TDM Overlay Passive Optical Network
808(15)
11.2.1 TDM PON Classification
808(1)
11.2.2 GPON Architecture and Performances
809(1)
11.2.2.1 GPON Transmission Performances
810(1)
11.2.2.2 GPON Frame and Adaptation Protocol
811(2)
11.2.2.3 GPON Capacity per User
813(3)
11.2.2.4 Functional Structure of a GPON OLT and ONU
816(2)
11.2.3 NG-PON Project and the GPON WDM Overlay
818(3)
11.2.4 XG-PON
821(2)
11.3 WDM Passive Optical Network
823(1)
11.4 WDM-PON versus GPON and XG-PON Performance Comparison
824(3)
11.5 Enabling Technologies for Gbit/s Capacity Access
827(12)
11.5.1 GPON Optical Interfaces
828(1)
11.5.1.1 GPON Interfaces Technology
828(3)
11.5.1.2 GPON Interfaces Draft Cost Model
831(3)
11.5.2 WDM-PON and XWDM-PON Interface Technology
834(2)
References
836(3)
Appendix A SDH/SONET Signaling 839(8)
Appendix B Spanning Tree Protocol 847(6)
Appendix C Inter-Symbol Interference Indexes Summation Rule 853(4)
Appendix D Fiber Optical Amplifiers: Analytical Modeling 857(6)
Appendix E Space Division Switch Fabric Performance Evaluation 863(6)
Appendix F Acronyms 869(8)
Index 877
Eugenio Iannone received his university degree in electronic engineering from Facoltà di Ingegneria, Università La Sapienza, Rome, Italy. He is a well-known executive consultant working mainly for small and medium-size companies. He consults on optimizing methods to drive key innovation processes or to transfer technologies from research institutes and universities to the industrial environment. With 15 years of experience in the telecommunication industry, Iannone has held several managerial positions. Since 2002, Iannone has been a senior vice president of application engineering at Pirelli Labs OI, the companys research and design center for telecommunications and strategy. He has also served as marketing director at PGT Photonics, the arm devoted to telecommunication components and subsystems business. During the course of his career, Iannone has authored more than 100 papers and developed several international patents on optical transmission, optical switching, and the architecture of optical networks.