Muutke küpsiste eelistusi

E-raamat: Tensegrity Structures: Form, Stability, and Symmetry

  • Formaat: PDF+DRM
  • Sari: Mathematics for Industry 6
  • Ilmumisaeg: 17-Mar-2015
  • Kirjastus: Springer Verlag, Japan
  • Keel: eng
  • ISBN-13: 9784431548133
  • Formaat - PDF+DRM
  • Hind: 196,98 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Mathematics for Industry 6
  • Ilmumisaeg: 17-Mar-2015
  • Kirjastus: Springer Verlag, Japan
  • Keel: eng
  • ISBN-13: 9784431548133

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

As well as presenting the fundamental properties of tensegrity structures, this book is the first to analytically study their self-equilibrium and super-stability, making use of this powerful tool for dealing with symmetry group representation theory.



To facilitate a deeper understanding of tensegrity structures, this book focuses on their two key design problems: self-equilibrium analysis and stability investigation. In particular, high symmetry properties of the structures are extensively utilized. Conditions for self-equilibrium as well as super-stability of tensegrity structures are presented in detail. An analytical method and an efficient numerical method are given for self-equilibrium analysis of tensegrity structures: the analytical method deals with symmetric structures and the numerical method guarantees super-stability. Utilizing group representation theory, the text further provides analytical super-stability conditions for the structures that are of dihedral as well as tetrahedral symmetry. This book not only serves as a reference for engineers and scientists but is also a useful source for upper-level undergraduate and graduate students. Keeping this objective in mind, the presentation of the book is self-contained and detailed, with an abundance of figures and examples.
1 Introduction 1(14)
1.1 General Introduction
1(1)
1.2 Applications
2(4)
1.2.1 Applications in Architecture
3(1)
1.2.2 Applications in Mechanical Engineering
4(1)
1.2.3 Applications in Biomedical Engineering
5(1)
1.2.4 Applications in Mathematics
5(1)
1.3 Form-Finding and Stability
6(5)
1.3.1 General Background
6(1)
1.3.2 Existing Form-finding Methods
7(2)
1.3.3 Stability
9(2)
1.4 Remarks
11(1)
References
11(4)
2 Equilibrium 15(40)
2.1 Definition of Configuration
15(8)
2.1.1 Basic Mechanical Assumptions
16(1)
2.1.2 Connectivity
17(3)
2.1.3 Geometry Realization
20(3)
2.2 Equilibrium Matrix
23(7)
2.2.1 Equilibrium Equations by Balance of Forces
23(4)
2.2.2 Equilibrium Equations by the Principle of Virtual Work
27(3)
2.3 Static and Kinematic Determinacy
30(13)
2.3.1 Maxwell's Rule
32(3)
2.3.2 Modified Maxwell's Rule
35(1)
2.3.3 Static Determinacy
36(2)
2.3.4 Kinematic Determinacy
38(4)
2.3.5 Remarks
42(1)
2.4 Force Density Matrix
43(5)
2.4.1 Definition of Force Density Matrix
43(2)
2.4.2 Direct Definition of Force Density Matrix
45(1)
2.4.3 Self-equilibrium of the Structures with Supports
46(2)
2.5 Non-degeneracy Condition for Free-standing Structures
48(5)
2.6 Remarks
53(1)
References
54(1)
3 Self-equilibrium Analysis by Symmetry 55(42)
3.1 Symmetry-based Equilibrium
55(3)
3.2 Symmetric X-cross Structure
58(4)
3.3 Symmetric Prismatic Structures
62(13)
3.3.1 Dihedral Symmetry
63(4)
3.3.2 Connectivity
67(2)
3.3.3 Self-equilibrium Analysis
69(6)
3.4 Symmetric Star-shaped Structures
75(8)
3.4.1 Connectivity
76(2)
3.4.2 Self-equilibrium Analysis
78(5)
3.5 Regular Truncated Tetrahedral Structures
83(11)
3.5.1 Tetrahedral Symmetry
85(3)
3.5.2 Self-equilibrium Analysis
88(6)
3.6 Remarks
94(2)
References
96(1)
4 Stability 97(40)
4.1 Stability and Potential Energy
97(4)
4.1.1 Equilibrium and Stability of a Ball Under Gravity
97(2)
4.1.2 Total Potential Energy
99(2)
4.2 Equilibrium and Stiffness
101(10)
4.2.1 Equilibrium Equations
102(3)
4.2.2 Stiffness Matrices
105(6)
4.3 Stability Criteria
111(17)
4.3.1 Stability
112(5)
4.3.2 Prestress-stability
117(5)
4.3.3 Super-stability
122(5)
4.3.4 Remarks
127(1)
4.4 Necessary and Sufficient Conditions for Super-stability
128(6)
4.4.1 Geometry Matrix
129(3)
4.4.2 Sufficient Conditions
132(2)
4.5 Remarks
134(1)
References
135(2)
5 Force Density Method 137(34)
5.1 Concept of Force Density Method
137(10)
5.1.1 Force Density Method for Cable-nets
138(3)
5.1.2 Force Density Method for Tensegrity Structures
141(4)
5.1.3 Super-Stability Condition
145(2)
5.2 Adaptive Force Density Method
147(11)
5.2.1 First Design Stage: Feasible Force Densities
147(8)
5.2.2 Second Design Stage: Self-equilibrated Configuration
155(3)
5.2.3 Remarks
158(1)
5.3 Geometrical Constraints
158(7)
5.3.1 Constraints on Rotational Symmetry
158(5)
5.3.2 Elevation (z-Coordinates)
163(1)
5.3.3 Summary of Constraints
164(1)
5.3.4 AFDM with Constraints
164(1)
5.4 Numerical Examples
165(4)
5.4.1 Three-Layer Tensegrity Tower
165(3)
5.4.2 Ten-Layer Tensegrity Tower
168(1)
5.5 Remarks
169(1)
References
170(1)
6 Prismatic Structures of Dihedral Symmetry 171(34)
6.1 Configuration and Connectivity
171(2)
6.2 Preliminary Study on Stability
173(2)
6.3 Conventional Symmetry-adapted Approach
175(4)
6.4 Symmetry-adapted Force Density Matrix
179(7)
6.4.1 Matrix Representation of Dihedral Group
179(1)
6.4.2 Structure of Symmetry-adapted Force Density Matrix
180(5)
6.4.3 Blocks of Symmetry-adapted Force Density Matrix
185(1)
6.5 Self-equilibrium Conditions
186(2)
6.6 Stability Conditions
188(8)
6.6.1 Divisibility Conditions
188(6)
6.6.2 Super-stability Condition
194(2)
6.7 Prestress-stability and Stability
196(5)
6.7.1 Height/Radius Ratio
197(2)
6.7.2 Connectivity
199(1)
6.7.3 Materials and Level of Prestresses
200(1)
6.8 Catalog of Stability of Symmetric Prismatic Structures
201(2)
6.9 Remarks
203(1)
References
203(2)
7 Star-Shaped Structures of Dihedral Symmetry 205(28)
7.1 Introduction
205(3)
7.2 Symmetry-adapted Force Density Matrix
208(7)
7.2.1 Force Density Matrix
209(1)
7.2.2 Structure of Symmetry-adapted Force Density Matrix
209(3)
7.2.3 Blocks of Symmetry-adapted Force Density Matrix
212(3)
7.3 Self-equilibrium Conditions
215(2)
7.4 Stability Conditions
217(9)
7.4.1 Divisibility Conditions
217(2)
7.4.2 Super-stability Conditions
219(4)
7.4.3 Prestress-stability
223(3)
7.5 Multi-stable Star-shaped Structure
226(5)
7.5.1 Preliminary Study
226(1)
7.5.2 Multi-stable Equilibrium Path
227(4)
7.6 Remarks
231(1)
References
231(2)
8 Regular Truncated Tetrahedral Structures 233(16)
8.1 Preliminary Study
233(2)
8.2 Tetrahedral Symmetry
235(3)
8.3 Symmetry-adapted Force Density Matrix
238(4)
8.3.1 Structure of Symmetry-adapted Force Density Matrix
239(1)
8.3.2 Blocks of Symmetry-adapted Force Density Matrix
240(2)
8.4 Self-equilibrium Conditions
242(2)
8.5 Super-stability Conditions
244(4)
8.5.1 Eigenvalues of the Three-dimensional Block
244(1)
8.5.2 Super-stability Condition for the First Solution qh1
245(1)
8.5.3 Super-stability Condition for the Second Solution qh2
246(2)
8.6 Remarks
248(1)
References
248(1)
Appendix A: Linear Algebra 249(14)
Appendix B: Affine Motions and Rigidity Condition 263(12)
Appendix C: Tensegrity Tower 275(8)
Appendix D: Group Representation Theory and Symmetry-adapted Matrix 283(16)
Index 299