Muutke küpsiste eelistusi

E-raamat: Tensor Analysis With Applications In Mechanics

(Gdansk Univ Of Technology, Poland), (Lawrence Technological Univ, Usa), (National Univ Of Colombia, Colombia)
  • Formaat: 380 pages
  • Ilmumisaeg: 18-May-2010
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814464505
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 44,46 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 380 pages
  • Ilmumisaeg: 18-May-2010
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814464505
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The tensorial nature of a quantity permits us to formulate transformation rules for its components under a change of basis. These rules are relatively simple and easily grasped by any engineering student familiar with matrix operators in linear algebra. More complex problems arise when one considers the tensor fields that describe continuum bodies. In this case general curvilinear coordinates become necessary. The principal basis of a curvilinear system is constructed as a set of vectors tangent to the coordinate lines. Another basis, called the dual basis, is also constructed in a special manner. The existence of these two bases is responsible for the mysterious covariant and contravariant terminology encountered in tensor discussions.A tensor field is a tensor-valued function of position in space. The use of tensor fields allows us to present physical laws in a clear, compact form. A byproduct is a set of simple and clear rules for the representation of vector differential operators such as gradient, divergence, and Laplacian in curvilinear coordinate systems.This book is a clear, concise, and self-contained treatment of tensors, tensor fields, and their applications. The book contains practically all the material on tensors needed for applications. It shows how this material is applied in mechanics, covering the foundations of the linear theories of elasticity and elastic shells.The main results are all presented in the first four chapters. The remainder of the book shows how one can apply these results to differential geometry and the study of various types of objects in continuum mechanics such as elastic bodies, plates, and shells. Each chapter of this new edition is supplied with exercises and problems most with solutions, hints, or answers to help the reader progress. An extended appendix serves as a handbook-style summary of all important formulas contained in the book.
Foreword v
Preface vii
Tensor Analysis
1(178)
1 Preliminaries
3(8)
1.1 The Vector Concept Revisited
3(1)
1.2 A First Look at Tensors
4(1)
1.3 Assumed Background
5(2)
1.4 More on the Notion of a Vector
7(2)
1.5 Problems
9(2)
2 Transformations and Vectors
11(18)
2.1 Change of Basis
11(1)
2.2 Dual Bases
12(5)
2.3 Transformation to the Reciprocal Frame
17(1)
2.4 Transformation Between General Frames
18(3)
2.5 Covariant and Contravariant Components
21(1)
2.6 The Cross Product in Index Notation
22(2)
2.7 Norms on the Space of Vectors
24(3)
2.8 Closing Remarks
27(1)
2.9 Problems
27(2)
3 Tensors
29(56)
3.1 Dyadic Quantities and Tensors
29(1)
3.2 Tensors From an Operator Viewpoint
30(4)
3.3 Dyadic Components Under Transformation
34(2)
3.4 More Dyadic Operations
36(4)
3.5 Properties of Second-Order Tensors
40(4)
3.6 Eigenvalues and Eigenvectors of a Second-Order Symmetric Tensor
44(4)
3.7 The Cayley-Hamilton Theorem
48(1)
3.8 Other Properties of Second-Order Tensors
49(7)
3.9 Extending the Dyad Idea
56(2)
3.10 Tensors of the Fourth and Higher Orders
58(2)
3.11 Functions of Tensorial Arguments
60(6)
3.12 Norms for Tensors, and Some Spaces
66(4)
3.13 Differentiation of Tensorial Functions
70(7)
3.14 Problems
77(8)
4 Tensor Fields
85(40)
4.1 Vector Fields
85(9)
4.2 Differentials and the Nabla Operator
94(4)
4.3 Differentiation of a Vector Function
98(1)
4.4 Derivatives of the Frame Vectors
99(1)
4.5 Christoffel Coefficients and their Properties
100(5)
4.6 Covariant Differentiation
105(1)
4.7 Covariant Derivative of a Second-Order Tensor
106(2)
4.8 Differential Operations
108(5)
4.9 Orthogonal Coordinate Systems
113(4)
4.10 Some Formulas of Integration
117(2)
4.11 Problems
119(6)
5 Elements of Differential Geometry
125(54)
5.1 Elementary Facts from the Theory of Curves
126(6)
5.2 The Torsion of a Curve
132(3)
5.3 Frenet-Serret Equations
135(2)
5.4 Elements of the Theory of Surfaces
137(11)
5.5 The Second Fundamental Form of a Surface
148(5)
5.6 Derivation Formulas
153(3)
5.7 Implicit Representation of a Curve; Contact of Curves
156(6)
5.8 Osculating Paraboloid
162(2)
5.9 The Principal Curvatures of a Surface
164(4)
5.10 Surfaces of Revolution
168(2)
5.11 Natural Equations of a Curve
170(3)
5.12 A Word About Rigor
173(2)
5.13 Conclusion
175(1)
5.14 Problems
175(4)
Applications in Mechanics
179(108)
6 Linear Elasticity
181(56)
6.1 Stress Tensor
181(9)
6.2 Strain Tensor
190(3)
6.3 Equation of Motion
193(1)
6.4 Hooke's Law
194(6)
6.5 Equilibrium Equations in Displacements
200(2)
6.6 Boundary Conditions and Boundary Value Problems
202(1)
6.7 Equilibrium Equations in Stresses
203(2)
6.8 Uniqueness of Solution for the Boundary Value Problems of Elasticity
205(1)
6.9 Betti's Reciprocity Theorem
206(2)
6.10 Minimum Total Energy Principle
208(8)
6.11 Ritz's Method
216(5)
6.12 Rayleigh's Variational Principle
221(6)
6.13 Plane Waves
227(3)
6.14 Plane Problems of Elasticity
230(2)
6.15 Problems
232(5)
7 Linear Elastic Shells
237(50)
7.1 Some Useful Formulas of Surface Theory
239(3)
7.2 Kinematics in a Neighborhood of Σ
242(2)
7.3 Shell Equilibrium Equations
244(5)
7.4 Shell Deformation and Strains; Kirchhoff's Hypotheses
249(7)
7.5 Shell Energy
256(3)
7.6 Boundary Conditions
259(2)
7.7 A Few Remarks on the Kirchhoff-Love Theory
261(2)
7.8 Plate Theory
263(14)
7.9 On Non-Classical Theories of Plates and Shells
277(10)
Appendix A Formulary 287(28)
Appendix B Hints and Answers 315(40)
Bibliography 355(4)
Index 359