Muutke küpsiste eelistusi

E-raamat: Tensors and Manifolds: With Applications to Physics

(, Department of Mathematics, Michigan State University, USA)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 14-May-2004
  • Kirjastus: Oxford University Press
  • Keel: eng
  • ISBN-13: 9780192539106
  • Formaat - PDF+DRM
  • Hind: 62,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 14-May-2004
  • Kirjastus: Oxford University Press
  • Keel: eng
  • ISBN-13: 9780192539106

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This is a paperback reprint of the 2004 cloth edition of Wasserman's essential textbook, with no additions or changes. Ideally suited for the advanced undergraduate or beginning graduate course, the text is derived from Wasserman's courses at Michigan State University and fills the gap for math directly applicable to current applications in physics, yet not too advanced for the non-specialist. Vector spaces, multilinear mappings, dual spaces, tensor product spaces, tensors, symmetric and skew-symmetric tensors, and exterior or Grassmann algebra are described in the initial chapters, with definitions and examples provided. Subsequent chapters offer the math underlying the physics in manifolds, mechanics, and various theories of spacetime, as well as lie groups, fiber bundles, and gauge theory, all presented in an engaging prose style. Annotation ©2009 Book News, Inc., Portland, OR (booknews.com)

This book sets forth the basic principles of tensors and manifolds and describes how the mathematics underlies elegant geometrical models of classical mechanics, relativity and elementary particle physics.

This second edition of Tensors and Manifolds is based on courses taken by advanced undergraduate and beginning graduate students in mathematics and physics, giving an introduction to the expanse of modern mathematics and its application in modern physics. It aims to fill the gap between the basic courses and the highly technical and specialized courses which both mathematics and physics students require in their advanced training, while simultaneously trying to promote, at an early stage, a better appreciation and understanding of each other's discipline. The book sets forth the basic principles of tensors and manifolds, describing how the mathematics underlies elegant geometrical models of classical mechanics, relativity and elementary particle physics. The existing material from the first edition has been reworked and extended in some sections to provide extra clarity, with additional problems. Four new chapters on Lie groups and fibre bundles have been included, leading to an exposition of gauge theory and the standard model of elementary particle physics. Mathematical rigour combined with an informal style makes this a very accessible book and will provide the reader with an enjoyable panorama of interesting mathematics and physics.

Arvustused

Review from previous edition Clearly written and self-contained and, in particular, the author has succeeded in combining mathematical rigor with a certain degree of informality in a satisfactory way. As such, this work will certainly be appreciated by a wide audience. * Mathematical Reviews *

1. Vector spaces ;
2. Multilinear mappings and dual spaces ;
3. Tensor
product spaces ;
4. Tensors ;
5. Symmetric and skew-symmetric tensors ;
6.
Exterior (Grassmann) algebra ;
7. The tangent map of real cartesian spaces ;
8. Topological spaces ;
9. Differentiable manifolds ;
10. Submanifolds ;
11.
Vector fields, 1-forms and other tensor fields ;
12. Differentiation and
integration of differential forms ;
13. The flow and the Lie derivative of a
vector field ;
14. Integrability conditions for distributions and for
pfaffian systems ;
15. Pseudo-Riemannian manifolds ;
16. Connection 1-forms ;
17. Connection on manifolds ;
18. Mechanics ;
19. Additional topics in
mechanics ;
20. A spacetime ;
21. Some physics on Minkowski spacetime ;
22.
Einstein spacetimes ;
23. Spacetimes near an isolated star ;
24. Nonempty
spacetimes ;
25. Lie groups ;
26. Fiber bundles ;
27. Connections on fiber
bundles ;
28. Gauge theory
Robert H. Wasserman is Professor Emeritus of Mathematics at Michigan State University, USA.