Muutke küpsiste eelistusi

E-raamat: Text Mining: A Guidebook for the Social Sciences

  • Formaat: PDF+DRM
  • Ilmumisaeg: 20-Apr-2016
  • Kirjastus: SAGE Publications Inc
  • Keel: eng
  • ISBN-13: 9781483369358
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 70,40 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 20-Apr-2016
  • Kirjastus: SAGE Publications Inc
  • Keel: eng
  • ISBN-13: 9781483369358
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

For social scientists, this guide explains methods drawn from computer science, the humanities, and social sciences for collecting and analyzing textual data from groups, communities, and organizations in online platforms. It discusses historical, philosophical, and ethical contexts and research design strategies; fundamentals like web crawling and scraping, lexical resources, basic text processing, and supervised learning; text analysis methods like thematic analysis, qualitative data analysis software, visualization, narrative analysis, and metaphor analysis; and text mining methods like word and text relatedness, text classification, information extraction and retrieval, sentiment analysis, and topic models. Annotation ©2016 Ringgold, Inc., Portland, OR (protoview.com)

Social media sites generate massive volumes of natural language data that are available for social science research. But social scientists have struggled to take advantage of "big data", and of the new technologies available for analyzing it. Should researchers learn programming languages in order to mine textual data? Are there software packages that can be repurposed for social science research? Can traditional theories and methods be scaled up to take advantage of new sources of textual data, or are new methods and new ways of thinking about theory needed? Text Mining: A Guidebook for Social Sciences addresses these questions and provides a methods guidebook to text mining and analysis for social scientists. It is intended for both new and experienced researchers, and provides strategic as well as practical guidance in the areas of text mining and qualitative and quantitative text analytic research methods. Gabe Ignatow and Rada Mihalcea critically survey this fast-changing landscape, providing a roadmap for researchers that will shorten the time from concept to publication, and scholarly impact.

Arvustused

Text Mining and Analysis is a comprehensive book that deals with the latest developments of text mining research, methodology, and applications. An excellent choice for anyone who wants to learn how these emerging practices can benefit their own research in an era of Big Data. -- Kenneth C. C. Yang This is a clear, comprehensive and thorough description of new text mining techniques and their applications: a "must" for students and social researchers who wish to understand how to tackle the challenges raised by Big Data. -- Aude Bicquelet

Preface xii
Acknowledgments xv
About the Authors xvi
Part I Digital Texts, Digital Social Science 1(32)
1 Social Science and the Digital Text Revolution
2(14)
History of Text Analysis
3(2)
Risks and Rewards of Text Mining for the Social Sciences
5(1)
Social Data From Digital Environments
6(4)
Theory and Metatheory
10(2)
Ethics of Text Mining
12(1)
Participant Consent, Privacy, and Anonymity
12(1)
Prompted and Unprompted Data
13(1)
Organization of This Volume
13(3)
2 Research Design Strategies
16(17)
Levels of Analysis
18(1)
The Textual Level
18(1)
The Contextual Level
18(1)
The Sociological Level
18(1)
Strategies for Document Selection and Sampling
19(3)
Case Selection
19(1)
Text Sampling
20(2)
Types of Inferential Logic
22(5)
Inductive Logic
23(1)
Deductive Logic
24(1)
Abductive Logic
25(2)
Approaches to Research Design
27(7)
Analysis of Discourse Positions
27(1)
Conversation Analysis
28(1)
Critical Discourse Analysis
28(1)
Content Analysis
29(1)
Foucauldian Intertextuality
30(1)
Analysis of Texts as Social Information
31(2)
Part II Text Mining Fundamentals 33(40)
3 Web Crawling and Scraping
34(8)
Web Statistics
36(1)
Web Crawling
37(2)
Process Steps in Crawling
37(1)
Traversal Strategies
38(1)
Crawler Politeness
38(1)
Web Scraping
39(2)
Software for Web Crawling and Scraping
41(1)
4 Lexical Resources
42(10)
WordNet
43(3)
WordNet-Affect
45(1)
Roget's Thesaurus
46(1)
Linguistic Inquiry and Word Count
46(2)
General Inquirer
48(1)
Wikipedia
48(3)
Wiktionary
51(1)
Downloadable Lexical Resources and Application Program Interfaces
51(1)
5 Basic Text Processing
52(10)
Tokenization
54(1)
Stop Word Removal
55(1)
Stemming and Lemmatization
55(1)
Text Statistics
56(3)
Language Models
59(1)
Other Text Processing
60(1)
Part of Speech Tagging
60(1)
Collocation Identification
60(1)
Syntactic Parsing
61(1)
Named Entity Tagging
61(1)
Word Sense Disambiguation
61(1)
Software for Text Processing
61(1)
6 Supervised Learning
62(11)
Feature Representation and Weighting
65(1)
Feature Weighting
65(1)
Supervised Learning Algorithms
66(5)
Decision Trees
67(1)
Instance-Based Learning
68(1)
Support Vector Machines
69(2)
Evaluation of Supervised Learning
71(1)
Software for Supervised Learning
71(2)
Part III Text Analysis Methods From The Humanities And Social Sciences 73(32)
7 Thematic Analysis, Qualitative Data Analysis Software, and Visualization
74(14)
Thematic Analysis
75(2)
Qualitative Data Analysis Software
77(6)
Visualization Tools
83(3)
Word Clouds
84(1)
Word Trees and Phrase Nets
84(1)
Matrices and Maps
85(1)
Key Word in Context
86(1)
Software for Thematic Analysis, Qualitative Data Analysis, and Visualization
86(2)
8 Narrative Analysis
88(8)
Conceptual Foundations
90(2)
Structural Approaches to Narrative
90(1)
Functionalist Approaches to Narrative
91(1)
Sociological Approaches to Narrative
92(1)
Mixed Methods of Narrative Analysis
92(1)
Automated Methods of Narrative Analysis
93(1)
Future Directions
93(1)
Software for Narrative Analysis
94(2)
9 Metaphor Analysis
96(9)
Theoretical Foundations
98(1)
Qualitative Metaphor Analysis
99(2)
Anthropology
99(1)
Educational Research
99(1)
Political Science
100(1)
Psychology
100(1)
Sociology
101(1)
Mixed Methods of Metaphor Analysis
101(2)
Management Research
101(1)
Psychology
102(1)
Sociology
102(1)
Automated Metaphor Identification Methods
103(1)
Software for Metaphor Analysis
103(2)
Part IV Text Mining Methods From Computer Science 105(58)
10 Word and Text Relatedness
106(10)
Theoretical Foundations
107(1)
Corpus-Based and Knowledge-Based Measures of Relatedness
108(6)
Corpus-Based Measures of Word Relatedness
108(2)
Knowledge-Based Measures of Word Relatedness
110(2)
Measures of Text Relatedness
112(2)
Software and Data Sets for Word and Text Relatedness
114(2)
11 Text Classification
116(14)
A Brief History of Text Classification
118(1)
Applications of Text Classification
119(3)
Topic Classification
119(1)
E-Mail Spam Detection
120(1)
Sentiment Analysis/Opinion Mining
120(1)
Gender Classification
120(2)
Deception Detection
122(1)
Other Applications
122(1)
Representing Texts for Supervised Text Classification
122(2)
Feature Weighting and Selection
123(1)
Text Classification Algorithms
124(2)
Naive Bayes
124(1)
Rocchio Classifier
125(1)
Bootstrapping in Text Classification
126(1)
Evaluation of Text Classification
127(1)
Software and Data Sets for Text Classification
127(3)
12 Information Extraction
130(6)
Entity Extraction
132(1)
Relation Extraction
133(1)
Web Information Extraction
134(1)
Template Filling
135(1)
Software and Data Sets for Information Extraction and Text Mining
135(1)
13 Information Retrieval
136(12)
Theoretical Foundations
138(1)
Components of an Information Retrieval System
138(2)
Information Retrieval Models
140(2)
The Vector Space Model
142(2)
Evaluation of Information Retrieval Models
144(1)
Web-Based Information Retrieval
145(2)
Software and Data Sets for Information Retrieval
147(1)
14 Sentiment Analysis
148(8)
Theoretical Foundations
150(1)
Lexicons
151(1)
Corpora
152(1)
Tools
153(1)
Software and Data Sets for Sentiment Analysis
154(2)
15 Topic Models
156(7)
Digital Humanities
160(1)
Political Science
160(1)
Sociology
161(1)
Software for Topic Modeling
161(2)
Part V Conclusions 163(5)
16 Text Mining, Text Analysis, and the Future of Social Science
164(4)
Social and Computer Science Collaboration
166(2)
References 168(15)
Index 183
Gabe Ignatow is Professor of Sociology and Director of Graduate Studies at the University of North Texas. His research interests are mainly in the areas of sociological theory, digital research methods, cognitive social science, and the philosophy of social science. His most recent books are Text Mining and An Introduction to Text Mining, both coauthored with Rada Mihalcea (University of Michigan). He is also a coeditor, with Wayne Brekhus (University of Missouri), of the Oxford Handbook of Cognitive Sociology.





Rada Mihalcea is a professor of computer science and engineering at the University of Michigan. Her research interests are in computational linguistics, with a focus on lexical semantics, multilingual natural language processing, and computational social sciences. She serves or has served on the editorial boards of the following journals: Computational Linguistics, Language Resources and Evaluation, Natural Language Engineering, Research on Language and Computation, IEEE Transactions on Affective Computing, and Transactions of the Association for Computational Linguistics. She was a general chair for the Conference of the North American Chapter of the Association for Computational Linguistics (NAACL, 2015) and a program cochair for the Conference of the Association for Computational Linguistics (2011) and the Conference on Empirical Methods in Natural Language Processing (2009). She is the recipient of a National Science Foundation CAREER award (2008) and a Presidential Early Career Award for Scientists and Engineers (2009). In 2013, she was made an honorary citizen of her hometown of Cluj-Napoca, Romania.