|
1 The Computational Library |
|
|
1 | (32) |
|
1.1 Computational Thinking |
|
|
1 | (5) |
|
1.2 Genealogy of Text Mining in Libraries |
|
|
6 | (2) |
|
|
8 | (9) |
|
1.3.1 Text Characteristics |
|
|
10 | (2) |
|
1.3.2 Different Text Mining Tasks |
|
|
12 | (3) |
|
1.3.3 Supervised vs. Unsupervised Learning Methods |
|
|
15 | (2) |
|
1.3.4 Cost, Benefits, and Barriers |
|
|
17 | (1) |
|
|
17 | (1) |
|
1.4 Case Study: Clustering of Documents Using Two Different Tools |
|
|
17 | (13) |
|
|
30 | (3) |
|
2 Text Data and Where to Find Them? |
|
|
33 | (46) |
|
|
33 | (5) |
|
|
34 | (4) |
|
2.2 Different Types of Data |
|
|
38 | (1) |
|
|
39 | (9) |
|
|
39 | (2) |
|
|
41 | (1) |
|
|
42 | (3) |
|
|
45 | (1) |
|
|
46 | (2) |
|
|
48 | (3) |
|
2.4.1 What Is a Metadata Standard? |
|
|
49 | (1) |
|
2.4.2 Steps to Create Quality Metadata |
|
|
50 | (1) |
|
2.5 Digital Data Creation |
|
|
51 | (3) |
|
2.6 Different Ways of Getting Data |
|
|
54 | (23) |
|
2.6.1 Downloading Digital Data |
|
|
56 | (1) |
|
2.6.2 Downloading Data from Online Repositories |
|
|
56 | (1) |
|
2.6.3 Downloading Data from Relational Databases |
|
|
56 | (7) |
|
|
63 | (3) |
|
2.6.5 Web Scraping/Screen Scraping |
|
|
66 | (11) |
|
|
77 | (2) |
|
|
79 | (26) |
|
|
79 | (2) |
|
3.1.1 Level of Text Representation |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
81 | (1) |
|
3.2.2 Dictionary Creation |
|
|
82 | (1) |
|
|
82 | (4) |
|
|
82 | (1) |
|
3.3.2 Morphological Normalization |
|
|
83 | (1) |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
85 | (1) |
|
3.3.7 Object Standardization |
|
|
85 | (1) |
|
|
86 | (10) |
|
|
86 | (1) |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
88 | (1) |
|
3.4.5 Term Frequency-Inverse Document Frequency (TF-IDF) |
|
|
89 | (1) |
|
3.4.6 Syntactical Parsing |
|
|
90 | (1) |
|
3.4.7 Parts-of-Speech Tagging (POS) |
|
|
91 | (2) |
|
3.4.8 Named Entity Recognition (NER) |
|
|
93 | (1) |
|
3.4.9 Similarity Computation Using Distances |
|
|
94 | (1) |
|
|
95 | (1) |
|
3.5 Case Study: An Analysis of Tolkien's Books |
|
|
96 | (7) |
|
|
103 | (2) |
|
|
105 | (34) |
|
4.1 What Is Topic Modeling? |
|
|
105 | (5) |
|
|
106 | (1) |
|
4.1.2 Application and Visualization |
|
|
107 | (1) |
|
4.1.3 Available Tools and Packages |
|
|
108 | (1) |
|
4.1.4 When to Use Topic Modeling |
|
|
109 | (1) |
|
4.1.5 When Not to Use Topic Modeling |
|
|
110 | (1) |
|
4.2 Methods and Algorithms |
|
|
110 | (3) |
|
4.3 Topic Modeling and Libraries |
|
|
113 | (6) |
|
|
117 | (2) |
|
4.4 Case Study: Topic Modeling of Documents Using Three Different Tools |
|
|
119 | (17) |
|
|
136 | (3) |
|
|
139 | (34) |
|
5.1 What Is Network Text Analysis? |
|
|
139 | (10) |
|
|
141 | (1) |
|
5.1.2 Centrality Measures |
|
|
142 | (3) |
|
|
145 | (1) |
|
5.1.4 Comparison of Network Text Analysis with Others |
|
|
145 | (1) |
|
5.1.5 How to Perform Network Text Analysis? |
|
|
146 | (1) |
|
5.1.6 Available Tools and Packages |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
149 | (1) |
|
|
149 | (4) |
|
5.2.1 Constructs of Topic Maps |
|
|
150 | (1) |
|
5.2.2 Topic Map Software Architecture |
|
|
151 | (1) |
|
|
152 | (1) |
|
5.2.4 Advantages of Topic Maps |
|
|
152 | (1) |
|
5.2.5 Disadvantages of Topic Maps |
|
|
153 | (1) |
|
5.3 Network Text Analysis and Libraries |
|
|
153 | (5) |
|
|
156 | (2) |
|
5.4 Case Study: Network Text Analysis of Documents Using Two Different R Packages |
|
|
158 | (13) |
|
|
171 | (2) |
|
|
173 | (18) |
|
6.1 What Is Burst Detection? |
|
|
173 | (6) |
|
6.1.1 How to Detect a Burst? |
|
|
174 | (1) |
|
6.1.2 Comparison of Burst Detection with Others |
|
|
175 | (1) |
|
6.1.3 How to Perform Burst Detection? |
|
|
176 | (1) |
|
6.1.4 Available Tools and Packages |
|
|
177 | (1) |
|
|
178 | (1) |
|
|
178 | (1) |
|
|
178 | (1) |
|
6.2 Burst Detection and Libraries |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
180 | (1) |
|
6.2.3 Reference Desk Service |
|
|
180 | (1) |
|
6.3 Case Study: Burst Detection of Documents Using Two Different Tools |
|
|
180 | (8) |
|
|
188 | (3) |
|
|
191 | (22) |
|
7.1 What Is Sentiment Analysis? |
|
|
191 | (6) |
|
7.1.1 Levels of Granularity |
|
|
192 | (1) |
|
7.1.2 Approaches for Sentiment Analysis |
|
|
193 | (1) |
|
7.1.3 How to Perform Sentiment Analysis? |
|
|
194 | (1) |
|
7.1.4 Available Tools and Packages |
|
|
195 | (1) |
|
|
196 | (1) |
|
|
196 | (1) |
|
|
196 | (1) |
|
7.2 Sentiment Analysis and Libraries |
|
|
197 | (4) |
|
|
200 | (1) |
|
7.3 Case Study: Sentiment Analysis of Documents Using Two Different Tools |
|
|
201 | (9) |
|
|
210 | (3) |
|
|
213 | (30) |
|
8.1 What Is Predictive Modeling? |
|
|
213 | (15) |
|
8.1.1 Why Use Machine Learning? |
|
|
215 | (1) |
|
8.1.2 Machine Learning Methods |
|
|
215 | (1) |
|
8.1.3 Feature Selection and Representation |
|
|
216 | (1) |
|
8.1.4 Machine Learning Algorithms |
|
|
216 | (3) |
|
8.1.5 Classification Task |
|
|
219 | (2) |
|
8.1.6 How to Perform Predictive Modeling on Text Documents? |
|
|
221 | (6) |
|
8.1.7 Available Tools and Packages |
|
|
227 | (1) |
|
|
227 | (1) |
|
|
228 | (1) |
|
8.2 Machine Learning and Libraries |
|
|
228 | (8) |
|
|
230 | (4) |
|
|
234 | (2) |
|
8.3 Case Study: Predictive Modeling of Documents Using RapidMiner |
|
|
236 | (4) |
|
|
240 | (3) |
|
9 Information Visualization |
|
|
243 | (52) |
|
9.1 What Is Information Visualization? |
|
|
243 | (8) |
|
9.1.1 Information Visualization Framework |
|
|
244 | (1) |
|
|
245 | (1) |
|
9.1.3 Graphic Variable Types |
|
|
246 | (1) |
|
|
247 | (1) |
|
9.1.5 Attribute Semantics |
|
|
248 | (1) |
|
9.1.6 What Is an Appropriate Visual Representation for a Given Dataset? |
|
|
248 | (1) |
|
|
248 | (1) |
|
9.1.8 How Does One Know How Good a Visual Encoding Is? |
|
|
249 | (1) |
|
9.1.9 Main Purpose of Visualization |
|
|
249 | (1) |
|
9.1.10 Modes of Visualization |
|
|
250 | (1) |
|
9.1.11 Methods of Graphic Visualization |
|
|
250 | (1) |
|
|
251 | (3) |
|
|
254 | (1) |
|
|
255 | (6) |
|
9.5 Rules on Visual Design |
|
|
261 | (1) |
|
|
262 | (7) |
|
9.7 Document Visualization |
|
|
269 | (1) |
|
9.8 Information Visualization and Libraries |
|
|
270 | (20) |
|
|
282 | (7) |
|
9.8.2 Information Visualization Skills for Librarians |
|
|
289 | (1) |
|
|
289 | (1) |
|
9.9 Case Study: To Build a Dashboard Using R |
|
|
290 | (2) |
|
|
292 | (3) |
|
10 Tools and Techniques for Text Mining and Visualization |
|
|
295 | (24) |
|
|
295 | (1) |
|
|
296 | (14) |
|
|
296 | (1) |
|
10.2.2 Topic-Modeling-Tool |
|
|
297 | (2) |
|
|
299 | (2) |
|
10.2.4 Waikato Environment for Knowledge Analysis (WEKA) |
|
|
301 | (1) |
|
|
302 | (2) |
|
|
304 | (2) |
|
10.2.7 Science of Science (Sci2) Tool |
|
|
306 | (1) |
|
|
307 | (1) |
|
|
308 | (1) |
|
|
309 | (1) |
|
|
310 | (8) |
|
|
310 | (1) |
|
|
311 | (1) |
|
|
312 | (1) |
|
10.3.4 Microsoft Power BI |
|
|
312 | (2) |
|
|
314 | (1) |
|
|
315 | (1) |
|
|
315 | (1) |
|
|
316 | (1) |
|
|
317 | (1) |
|
|
318 | (1) |
|
11 Text Data and Mining Ethics |
|
|
319 | (30) |
|
11.1 Text Data Management |
|
|
319 | (11) |
|
|
320 | (1) |
|
|
320 | (5) |
|
|
325 | (1) |
|
|
326 | (1) |
|
11.1.5 Need of Data Management for Text Mining |
|
|
326 | (1) |
|
11.1.6 Benefits of Data Management for Text Mining |
|
|
327 | (1) |
|
11.1.7 Ethical and Legal Rules Related to Text Data |
|
|
327 | (3) |
|
|
330 | (2) |
|
11.2.1 Framework for Ethical Research with Social Media Data |
|
|
332 | (1) |
|
11.3 Ethical and Legal Issues Related to Text Mining |
|
|
332 | (15) |
|
|
337 | (1) |
|
11.3.2 License Conditions |
|
|
337 | (1) |
|
11.3.3 Algorithmic Confounding/Biasness |
|
|
338 | (9) |
|
|
347 | (2) |
Index |
|
349 | |