Muutke küpsiste eelistusi

E-raamat: Text Mining of Web-Based Medical Content

Contributions by , Edited by , Contributions by , Contributions by , Contributions by , Contributions by , Contributions by , Contributions by , Contributions by , Contributions by
  • Formaat - EPUB+DRM
  • Hind: 99,45 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
    • De Gruyter e-raamatud

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Includes Text Mining and Natural Language Processing Methods for extracting information from electronic health records and biomedical literature. Analyzes text analytic tools for new media such as online forums, social media posts, tweets and video sharing. Demonstrates how to use speech and audio technologies for improving access to online content for the visually impaired.

Text Mining of Web-Based Medical Content examines various approaches to deriving high quality information from online biomedical literature, electronic health records, query search terms, social media posts and tweets. Using some of the latest empirical methods of knowledge extraction, the authors show how online content, generated by both professionals and laypersons, can be mined for valuable information about disease processes, adverse drug reactions not captured during clinical trials, and tropical fever outbreaks. Additionally, the authors show how to perform infromation extraction on a hospital intranet, how to build a social media search engine to glean information about patients' own experiences interacting with healthcare professionals, and how to improve access to online health information.

This volume provides a wealth of timely material for health informatic professionals and machine learning, data mining, and natural language researchers.

Topics in this book include: Mining Biomedical Literature and Clinical Narratives Medication Information Extraction Machine Learning Techniques for Mining Medical Search Queries Detecting the Level of Personal Health Information Revealed in Social Media

Curating Laypersons Personal Experiences with Health Care from Social Media and Twitter Health Dialogue Systems for Improving Access to Online Content Crowd-based Audio Clips to Improve Online Video Access for the Visually Impaired Semantic-based Visual Information Retrieval for Mining Radiographic Image Data Evaluating the Importance of Medical Terminology in YouTube Video Titles and Descriptions

Preface
I. Overview

1. The Social Impact of Medical Social Media on the Healthcare Delivery System

2. Demographics and Medical Social Media: What Can We Learn about Various Populations?

3. Differentiating Among Different Social Platforms for Sharing Medical Social Media

II. Mining Methods

4. What Are the Distinguishing Linguistic Characteristics of Medical Social Media Postings that Pose Difficulties for Data Mining

5. Comparing Existing Data Extraction Methods for Mining Medical Content on the Web

6. New Data Mapping Tools for Mining Medical Social Media

III. Future Projections

7. Where is Social Medicine Headed in Next 5-10 Years?

8. The Domino Effect of Improved Data Extraction Methods for Medical Social Media on other Forms of Social Media

Amy Neustein, Founder and CTO, Linguistic Technology Systems, Fort Lee, NJ, USA.