Muutke küpsiste eelistusi

E-raamat: Text, Speech, and Dialogue: 27th International Conference, TSD 2024, Brno, Czech Republic, September 9-13, 2024, Proceedings, Part II

Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 160,54 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The two-volume set LNAI 15048 and 15049 constitutes the refereed proceedings of the 27th International Conference on Text, Speech, and Dialogue, TSD 2024, held in Brno, Czech Republic, during September 913, 2024.

The 50 revised full papers presented in these deadline proceedings were carefully reviewed and selected from 103 submissions. 





The papers are organized in the following topical sections:





Part I: Text





Part II: Speech, Dialogue
.- Speech.

.- Retrieval Augmented Spoken Language Generation for Transport Domain.

.- Adapting Audiovisual Speech Synthesis to Estonian.

.- Dysphonia Diagnosis Using Self-Supervised Speech Models in Mono- and
Cross-Lingual Settings.

.- Sentences vs Phrases in Neural Speech Synthesis.

.- Zero-Shot vs. Few-Shot Multi-Speaker TTS Using Pre-trained Czech SpeechT5
Model.

.- Deep Speaker Embeddings for Speaker Verification of Children.

.- Improved Alignment for Score Combination of RNN-T and CTC Decoder for
Online Decoding.

.- Attention to Phonetics: A Visually Informed Explanation of Speech
Transformers.

.- Effects of Training Strategies and the Amount of Speech Data on the
Quality of Speech Synthesis.

.- Stream-Based Active Learning for Speech Emotion Recognition via Hybrid
Data Selection and Continuous Learning.

.- Data Alignment and Duration Modelling in VITS.

.- Multiword Expressions Resources for Italian: Presenting a Manually
Annotated Spoken Corpus.

.- Generating High-Quality F0 Embeddings Using the Vector-Quantized
Variational Autoencoder.

.- Anonymizing Dysarthric Speech: Investigating the Effects of Voice
Conversion on Pathological Information Preservation.

.- X-vector-based Speaker Diarization Using Bi-LSTM and Interim Voting-driven
Post-processing.

.- A Paradigm for Interpreting Metrics and Measuring Error Severity in
Automatic Speech Recognition.

.- Enhancing Speech Emotion Recognition Using Transfer Learning From Speaker
Embeddings.

.- Dialogue.

.- Investigating Low-Cost LLM Annotation for Spoken Dialogue Understanding
Datasets.

.- PiCo-VITS: Leveraging Pitch Contours for Fine-grained Emotional Speech
Synthesis.

.- Improving and Understanding Clarifying Question Generation in
Conversational Search.

.- Explainable Multimodal Fusion for Dementia Detection From Text and
Speech.

.- Robust Classification of Parkinsons Speech: an Approximation to a
Scenario With Non-controlled Acoustic Conditions.

.- Leveraging Conceptual Similarities to Enhance Modeling of Factors
Affecting Adolescents Well-Being.

.- Joint-Average Mean and Variance Feature Matching (JAMVFM) Semi-supervised
GAN with Additional-Objective Training Function for Intent Detection.

.- Capturing Task-Related Information for Text-Based Grasp Classification
Using Fine-Tuned Embeddings.

.- StepDP: A Step Towards Expressive and Pervasive Dialogue Platforms .

.- Automatic Classification of Parkinsons Disease Using Wav2vec Embeddings
at Phoneme, Syllable, and Word Levels.