Muutke küpsiste eelistusi

E-raamat: Theoretical Femtosecond Physics: Atoms and Molecules in Strong Laser Fields

  • Formaat: EPUB+DRM
  • Sari: Graduate Texts in Physics
  • Ilmumisaeg: 21-Mar-2018
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319745428
  • Formaat - EPUB+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Graduate Texts in Physics
  • Ilmumisaeg: 21-Mar-2018
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319745428

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This textbook extends from the basics of femtosecond physics all the way to some of the latest developments in the field. In this updated edition, the chapter on laser-driven atoms is augmented by the discussion of two-electron atoms interacting with strong and short laser pulses, as well as by a review of ATI rings and low energy structures in photo-electron spectra. In the chapter on laser-driven molecules a discussion of 2D infrared spectroscopy is incorporated.

Theoretical investigations of atoms and molecules interacting with pulsed lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. The presentation starts with a brief introduction to pulsed laser physics. The basis for the non-perturbative treatment of laser-matter interaction in the book is the time-dependent Schrödinger equation. Its analytical as well as numerical solution are laid out in some detail. The light field is treated classically and different possible gauges for the field-matter interaction are discussed. Physical phenomena, ranging from paradigmatic Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high-order harmonics, the ionization and dissociation of molecules, as well as the control of chemical reactions are presented and discussed on a fundamental level. In this way, the theoretical background for state of the art experiments with strong and short laser pulses is given.

The new text is augmented by several additional exercises and now contains a total of forty-eight problems, whose worked-out solutions are given in the last chapter. In addition, some detailed calculations are performed in the appendices. Furthermore, each chapter ends with references to more specialized literature.
Part I Prerequisites
1 A Short Introduction to Laser Physics
3(16)
1.1 The Einstein Coefficients
3(3)
1.2 Fundamentals of the Laser
6(4)
1.2.1 Elementary Laser Theory
6(2)
1.2.2 Realization of the Laser Principle
8(2)
1.3 Pulsed Lasers
10(5)
1.3.1 Frequency Comb
10(2)
1.3.2 Carrier Envelope Phase
12(2)
1.3.3 Husimi Representation of Laser Pulses
14(1)
1.4 Notes and Further Reading
15(4)
1.A Some Gaussian Integrals
16(1)
References
16(3)
2 Time-Dependent Quantum Theory
19(68)
2.1 The Time-Dependent Schrodinger Equation
19(16)
2.1.1 Introduction
20(3)
2.1.2 Time-Evolution Operator
23(4)
2.1.3 Spectral Information
27(2)
2.1.4 Analytical Solutions for Wavepackets
29(6)
2.2 Analytical Approaches to Solve the TDSE
35(19)
2.2.1 Feynman's Path Integral
35(3)
2.2.2 Stationary Phase Approximation
38(1)
2.2.3 Semiclassical Approximation
39(4)
2.2.4 Pictures of Quantum Mechanics and Time-Dependent Perturbation Theory
43(3)
2.2.5 Magnus Expansion
46(1)
2.2.6 Time-Dependent Hartree Method
47(1)
2.2.7 Quantum-Classical Methods
48(3)
2.2.8 Floquet Theory
51(3)
2.3 Numerical Methods
54(20)
2.3.1 Orthogonal Basis Expansion
54(5)
2.3.2 Split-Operator Method
59(4)
2.3.3 Alternative Methods of Time-Evolution
63(2)
2.3.4 Semiclassical Initial Value Representations
65(9)
2.4 Notes and Further Reading
74(13)
2.A The Royal Road to the Path Integral
76(1)
2.B Variational Calculus
77(2)
2.C Stability Matrix
79(2)
2.D From the HK-to the VVG-Propagator
81(1)
References
82(5)
Part II Applications
3 Field-Matter Coupling and Two-Level Systems
87(26)
3.1 Light-Matter Interaction
87(10)
3.1.1 Minimal Coupling
88(2)
3.1.2 Dipole Approximation and Length Gauge
90(2)
3.1.3 Kramers-Henneberger Transformation
92(2)
3.1.4 Volkov Wavepacket and Ponderomotive Energy
94(3)
3.2 Analytically Solvable Two-Level Problems
97(8)
3.2.1 Dipole Matrix Element
97(1)
3.2.2 Rabi Oscillations Induced by a Constant Perturbation
98(2)
3.2.3 Time-Dependent Perturbations and Rotating Wave Approximation
100(3)
3.2.4 Exactly Solvable Time-Dependent Cases
103(2)
3.3 Notes and Further Reading
105(8)
3.A Generalized Parity Transformation
106(1)
3.B Pauli Spin Matrices and the Two-Level Density Matrix
107(2)
3.C Two-Level System in an Incoherent Field
109(2)
References
111(2)
4 Atoms in Strong Laser Fields
113(60)
4.1 The Hydrogen Atom
113(5)
4.1.1 Hydrogen in 3 Dimensions
114(2)
4.1.2 The One-Dimensional Coulomb Problem
116(2)
4.2 The Helium Atom
118(4)
4.2.1 Hamiltonian and TISE
118(1)
4.2.2 Spin and the Pauli Principle
119(2)
4.2.3 Semiclassical Determination of Helium Spectra
121(1)
4.3 Field-Induced Ionization
122(21)
4.3.1 Tunneling Ionization
122(1)
4.3.2 Multi-Photon Ionization
123(5)
4.3.3 Keldysh Parameter and Strong-Field Approximation
128(2)
4.3.4 ATI in the Coulomb Potential
130(4)
4.3.5 Stabilization in Very Strong Fields
134(2)
4.3.6 Atoms Driven by Half-Cycle Pulses
136(7)
4.4 Sundry Topics
143(9)
4.4.1 Three-Step Model and ATI Rings
143(3)
4.4.2 Low-Energy Structure
146(3)
4.4.3 Double Ionization of Helium
149(3)
4.5 High-Order Harmonic Generation
152(14)
4.5.1 Three-Step Model of HHG
153(3)
4.5.2 The Cutoff
156(1)
4.5.3 Odd Harmonics Rule
157(1)
4.5.4 Semiclassical Explanation of the Plateau
157(2)
4.5.5 Cutoff and Odd Harmonics Revisited
159(5)
4.5.6 Dominant Interaction Hamiltonian for HHG
164(2)
4.6 Notes and Further Reading
166(7)
4.A More on Atomic Units
168(2)
References
170(3)
5 Molecules in Strong Laser Fields
173(86)
5.1 The Molecular Ion H2+
173(8)
5.1.1 Electronic Potential Energy Surfaces
174(5)
5.1.2 The Morse Potential
179(2)
5.2 H+2 in a Laser Field
181(10)
5.2.1 Frozen Nuclei
182(4)
5.2.2 Nuclei in Motion
186(5)
5.3 Adiabatic and Nonadiabatic Nuclear Dynamics
191(19)
5.3.1 Born-Oppenheimer Approximation
192(6)
5.3.2 Dissociation in a Morse Potential
198(3)
5.3.3 Coupled Potential Energy Surfaces
201(9)
5.4 Femtosecond Pump-Probe Spectroscopy
210(13)
5.4.1 2D IR Spectroscopy
211(3)
5.4.2 Pump-Probe Photoelectron Spectroscopy of Nai
214(6)
5.4.3 Fluorescence Spectroscopy of ICN
220(3)
5.5 Control of Molecular Dynamics
223(21)
5.5.1 Control of Tunneling
224(7)
5.5.2 Control of Population Transfer
231(3)
5.5.3 Optimal Control Theory
234(6)
5.5.4 Genetic Algorithms
240(2)
5.5.5 Towards Quantum Computing with Molecules
242(2)
5.6 Notes and Further Reading
244(15)
5.A Relative and Center of Mass Coordinates for H2+
247(1)
5.B Perturbation Theory for Two Coupled Surfaces
248(1)
5.C Reflection Principle of Photodissociation
249(1)
5.D The Undriven Double-Well Problem
250(2)
5.E The Quantum Mechanical Adiabatic Theorem
252(1)
References
253(6)
Part III Supplements
6 Solutions to Problems
259(52)
6.1 Solutions to Problems in Chap. 1
259(3)
6.2 Solutions to Problems in Chap. 2
262(17)
6.3 Solutions to Problems in Chap. 3
279(10)
6.4 Solutions to Problems in Chap. 4
289(7)
6.5 Solutions to Problems in Chap. 5
296(15)
References
310(1)
Index 311
Frank Grossmann obtained his diploma in Physics at the University of Stuttgart (1989) and a PhD from the University of Augsburg (1992). After postdoctoral stays in the US (at the University of Washington and at Harvard University (as a Feodor Lynen fellow of the Alexander von Humboldt foundation), as well as at the University of Notre Dame) the habilitation and the venia legendi were obtained at the University of Freiburg (Germany) in 1998. At his present institution, Technische Universität Dresden, the venia legendi was granted in 2000. Up to the present date he is working in teaching as well as in research at the Institut für Theoretische Physik in the Theoretical Atomic and Molecular Physics group. Several research stays led to the Weizmann Institute (Israel), ITAMP (Cambridge, USA), Kyoto University (Japan), as well as Nanyang Technological University (Singapore).