Muutke küpsiste eelistusi

E-raamat: Theory of Adaptive Structures: Incorporating Intelligence into Engineered Products

(Duke University)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

On-board microprocessors have taken over from humans the function of evaluating telemetry data from spacecraft. Utku (civil engineering and computer science) addresses the new challenges in controlling the behavior of engineering systems created by advances in sensor, actuator, and microprocessor technologies, furnishing theoretical grounding for the structural engineer in the design and control of discrete parameter adaptive structures. Coverage spans such topics as: excitation-response relations and active control of response (in diverse cases). Annotation c. by Book News, Inc., Portland, Or.

Theory of Adaptive Structures provides the basic theory for controlling adaptive structures in static and dynamic environments. It synthesizes well-established theories on modern control as well as statics and dynamics of deformable bodies. Discussions concentrate on the discrete parameter adaptive structures dealing with actuator placement, actuator selection, and actuation computation problems - keeping these structures at close proximity of any chosen nominal state with the least energy consumption. An introduction to the distributed parameter adaptive structures is also provided.

The book follows that modern trend in research and industry striving to incorporate intelligence into engineered products through microprocessors that are becoming smaller, faster, and cheaper at astounding rates. Not using them in engineered products may become an enormous liability.

Resulting from the advances in materials technology on sensors and actuator technologies as well as the availability of very powerful and reliable microprocessors, there is an ever-increasing interest in actively controlling the behavior of engineering systems. Engineers and engineering scientists must revive and broaden their activities to maximize applications for predicting and controlling the behavior of deformable bodies.

Topics include:
  • An introduction to adaptive structures
  • Incremental excitation-response relations in static and dynamic cases
  • Active control of response in static case
  • Statically determinate adaptive structures
  • Statically indeterminate adaptive structures
  • Active vibration control for autonomous and non-autonomous cases
  • Active control against wind
  • Active control against seismic loads
  • Distributed parameter adaptive structures

    The technology of adaptive structures has created an environment where the analysis, not the computation, of structural response - due to actuator-inserted deformations - has become important. Problems related to the placement, the operation in real time, and the energy consumption of the actuators require the review and broadening of the theories long dormant due to the emphasis placed in the numerical simulations of structural behavior by the displacement finite element method.
    This book furnishes the basic theory needed by modern engineers in the design and control of discrete parameter adaptive structures .
  • Preface
    1 Introduction
    1(18)
    1.1 History
    1(2)
    1.2 Definitions
    3(2)
    1.3 Types of Structures
    5(2)
    1.4 Types of Problems
    7(1)
    1.5 Qualitative Analysis in State Space
    7(3)
    1.5.1 Example of Static Transient Loading
    8(1)
    1.5.2 Example of Dynamic Transient Loading
    9(1)
    1.6 Constituents of Adaptive Structures
    10(7)
    1.6.1 Structure
    10(4)
    1.6.2 Sensors
    14(1)
    1.6.3 Actuators
    15(1)
    1.6.4 Microprocessors and Their Software
    16(1)
    1.7 Objectives, Scope, and Outline
    17(2)
    2 Incremental Excitation-Response Relations, Static Case
    19(28)
    2.1 Basic Definitions
    19(6)
    2.1.1 Structure
    19(2)
    2.1.2 Excitations
    21(1)
    2.1.3 Incremental Response
    22(3)
    2.1.4 Excitation-Response Relations
    25(1)
    2.2 Equilibrium of Forces
    25(11)
    2.2.1 Equilibrium of Structural Elements
    26(2)
    2.2.2 Equilibrium of Nodes
    28(3)
    2.2.3 Effect of Preexisting Internal Forces
    31(5)
    2.3 Geometric Relations
    36(3)
    2.3.1 Case When Delta v(0)=O
    36(1)
    2.3.2 Case When Delta Xi=O
    37(2)
    2.3.3 Final Form
    39(1)
    2.4 Stiffness Relations of Elements
    39(6)
    2.4.1 Element Stiffness Matrices
    40(1)
    2.4.2 Element Flexibility Matrices
    41(2)
    2.4.3 Obtaining K(k) from F(k)
    43(2)
    2.5 Incremental Excitation-Response Relations
    45(2)
    3 Active Control of Response, Static Case
    47(20)
    3.1 Inverse Relations
    48(6)
    3.1.1 By Displacement Method
    48(2)
    3.1.2 By Force Method
    50(3)
    3.1.3 Statically Determinate Case
    53(1)
    3.2 Actuators of Adaptive Structures
    54(1)
    3.3 Basic Equations for Adaptive Structures
    55(1)
    3.4 Actuator Locations and Controls
    56(1)
    3.5 Observed Response Components and Output
    57(1)
    3.6 Determination of Controls
    58(2)
    3.7 Fate of Unobserved Response Components
    60(2)
    3.8 Control Energy
    62(2)
    3.9 Compatibility of Controls in Adaptive Structures
    64(1)
    3.10 Recapitulation
    65(2)
    4 Statically Determinate Adaptive Structures
    67(20)
    4.1 Excitation-Response Relations
    67(2)
    4.2 Observed Response Components and Disturbances
    69(1)
    4.3 Actuators and Controls
    70(1)
    4.4 Actuator Placement and Control Problems
    71(2)
    4.5 Actuator Placement and Control Computation When q=p less than n
    73(2)
    4.5.1 Actuator Placement Problem
    73(1)
    4.5.2 Computation of Controls
    74(1)
    4.6 Actuator Selection and Control Computation When p less than q=n
    75(1)
    4.6.1 Actuator Selection Problem
    75(1)
    4.6.2 Computation of Controls in Selected Actuators
    76(1)
    4.7 Actuator Placement and Control When p less than q less than n
    76(2)
    4.7.1 Actuator Placement Problem
    77(1)
    4.7.2 Selection of Actuators and Computation of Controls
    78(1)
    4.8 Precision Control
    78(1)
    4.9 Adaptive Trusses as Slow Moving Mechanical Manipulators
    79(4)
    4.9.1 Actuator Placement When p=q less than n
    82(1)
    4.9.2 Actuator Selection When p less than q=n
    82(1)
    4.9.3 Actuator Placement When p less than q less than n
    82(1)
    4.9.4 Computation of Controls
    83(1)
    4.10 Generation of Output-Control Matrix
    83(3)
    4.11 Recapitulation
    86(1)
    5 Statically Indeterminate Adaptive Structures
    87(22)
    5.1 Excitation-Response Relations
    87(5)
    5.1.1 Relations for Adaptive Structures
    88(1)
    5.1.2 Inverse Relations
    88(1)
    5.1.3 Computation of Matrices C and C'
    89(1)
    5.1.4 Response due to Delta v(0)
    90(2)
    5.2 Observed Response Components and Disturbances
    92(1)
    5.3 Actuators and Controls
    93(1)
    5.4 Prevention of Stress Build-up
    94(3)
    5.5 Secondary Actuators
    97(3)
    5.5.1 Transformation of Compatibility Equation
    97(2)
    5.5.2 Placement and Control of Secondary Actuators
    99(1)
    5.6 Primary Actuators
    100(7)
    5.6.1 Number of Primary Actuators q
    101(2)
    5.6.2 Placement and Control of Primary Actuators
    103(4)
    5.6.3 Generation of Matrix I(T)(Alpha)B(-T)(1)
    107(1)
    5.7 Recapitulation of Actuator Placement
    107(1)
    5.8 Recapitulation
    108(1)
    6 Excitation-Response Relations, Dynamic Case
    109(12)
    6.1 Equilibrium Equations
    109(6)
    6.1.1 Restoring Forces
    110(1)
    6.1.2 Inertial Forces
    111(2)
    6.1.3 Frictional Forces
    113(1)
    6.1.4 External Forces
    114(1)
    6.1.5 Dynamic Equilibrium Equations of Nodes
    114(1)
    6.2 Geometric Relations
    115(2)
    6.2.1 Uncontrolled Part of Prescribed Element Deformations
    115(1)
    6.2.2 Controlled Part of Prescribed Element Deformations
    116(1)
    6.3 Stiffness Relations of Elements
    117(1)
    6.4 Excitation-Response Relations
    117(4)
    6.4.1 Dynamic Equilibrium Equations in terms of Xi
    118(1)
    6.4.2 Equations of Motion of Nodes
    119(1)
    6.4.3 Initial Conditions
    120(1)
    7 Inverse Relations, Dynamic Case
    121(28)
    7.1 Method for Obtaining the Inverse Relations
    121(3)
    7.2 Undamped Free Vibrations of Nodes
    124(4)
    7.3 Damped Free Vibrations of Nodes
    128(2)
    7.4 Nodal Motion due to Nodal Forces
    130(2)
    7.5 Nodal Motion due to Prescribed Element Deformations
    132(1)
    7.6 Nodal Vibrations due to Support Movements
    133(1)
    7.7 Nodal Motion due to Actuator Induced Deformations
    134(1)
    7.8 Trajectory of Nodes in State Space
    135(10)
    7.8.1 Uncontrolled Autonomous System
    136(4)
    7.8.2 Uncontrolled Non-Autonomous System
    140(3)
    7.8.3 Controlled Autonomous System
    143(1)
    7.8.4 Controlled Non-Autonomous System
    144(1)
    7.9 Steady State of Nodal Deflections
    145(3)
    7.9.1 Time Function of Loads Becomes Constant
    146(1)
    7.9.2 Time Function of Loads is Cyclic
    146(2)
    7.10 Recapitulation of Inverse Relations
    148(1)
    8 Active Control of Response, Autonomous Case
    149(34)
    8.1 Response to Actuator Induced Element Deformations
    149(2)
    8.2 Energy Cost of Inducing Element Deformations
    151(3)
    8.2.1 Element Forces by the Displacement Method
    152(1)
    8.2.2 Element Forces by the Force Method
    152(2)
    8.3 Response Control
    154(1)
    8.4 Open-Loop Control
    155(2)
    8.5 Optimal State Feedback Control
    157(6)
    8.5.1 Identification of Optimal Trajectory
    158(2)
    8.5.2 Identification of the Optimal Control Law
    160(2)
    8.5.3 Practical Difficulties with Optimal State Control
    162(1)
    8.6 Optimal Output Feedback Control
    163(2)
    8.7 Optimal Direct Output Feedback Control
    165(4)
    8.8 Alternatives to Optimal Control
    169(7)
    8.8.1 Choosing Gain Matrix by Trial and Error
    169(3)
    8.8.2 Choosing Gain Matrix by Eigenvalue Assignment
    172(4)
    8.9 Actuator Placement
    176(4)
    8.9.1 Placement Criteria to Minimize Control Time
    177(1)
    8.9.2 Placement Criteria to Minimize Spill-Over
    178(2)
    8.10 Time Lag in Feedback Control
    180(1)
    8.11 Recapitulation, Autonomous Case
    181(2)
    9 Active Control of Response, Non-Autonomous Case
    183(14)
    9.1 Total Response Including Control Excitations
    183(4)
    9.1.1 Treatment in n-Space
    183(3)
    9.1.2 Treatment in State Space
    186(1)
    9.2 Response Control
    187(1)
    9.3 Energy Considerations
    188(2)
    9.4 Optimal State Feedback Control
    190(3)
    9.4.1 Case When Excitation is Known a Priori
    190(2)
    9.4.2 Case When Tracked Trajectory is Known a Priori
    192(1)
    9.4.3 Case When Excitation is not Known a Priori
    193(1)
    9.5 Non-Optimal Control Possibilities
    193(1)
    9.6 Actuator Placement
    194(2)
    9.7 Recapitulation, Non-Autonomous Case
    196(1)
    10 Active Control Against Wind
    197(12)
    10.1 State Equations for Wind Type Excitations
    198(1)
    10.2 Control Possibilities of Nodal Motion
    199(2)
    10.2.1 Insulate Structure Against Wind Forces
    199(1)
    10.2.2 Determine Controls by Measuring Nodal Wind Forces
    199(1)
    10.2.3 Determine Controls by Measuring the State
    200(1)
    10.3 Excitation Power
    201(1)
    10.4 What to Control
    202(2)
    10.5 Actuator Placement
    204(2)
    10.6 Control Law
    206(1)
    10.7 Recapitulation of Active Control Against Wind
    207(2)
    11 Active Control Against Seismic Loads
    209(18)
    11.1 State Equations for Seismic Excitations
    209(1)
    11.2 Control Possibilities of Nodal Motion
    210(3)
    11.2.1 Insulate Structure Against Support Motions
    211(1)
    11.2.2 Determine Controls by Sensing Support Motion
    211(1)
    11.2.3 Determine Controls by Sensing the State
    212(1)
    11.3 Managing Excitation Power
    213(1)
    11.4 Passive Base Isolation Systems
    214(5)
    11.4.1 Justification
    215(2)
    11.4.2 Analysis
    217(2)
    11.5 Actuator Placement for Active Base Isolation
    219(3)
    11.5.1 Planar Frames under Horizontal Ground Motion
    219(1)
    11.5.2 Planar Frames under Vertical Ground Motion
    220(1)
    11.5.3 Space Frames under Horizontal Ground Motion
    221(1)
    11.6 Control of Active Base Isolation Systems
    222(3)
    11.6.1 Control Energy
    222(1)
    11.6.2 Control System
    223(1)
    11.6.3 Control Law
    223(2)
    11.7 Recapitulation of Active Control Against Seismic Excitations
    225(2)
    12 Distributed Parameter Adaptive Structures
    227(28)
    12.1 Incorporating Intelligence
    227(2)
    12.2 Composite Materials
    229(4)
    12.2.1 Piezo-Electric Composite Materials as Actuators
    229(1)
    12.2.2 Piezo-Electric Composite Materials as Sensors
    230(1)
    12.2.3 Distributed Parameter Adaptive Structures
    230(3)
    12.3 Static Case
    233(17)
    12.3.1 Incremental Linear Excitation-Response Relations
    233(9)
    12.3.2 Inverse Relations
    242(6)
    12.3.3 Compatibility of Induced Strains
    248(1)
    12.3.4 Control
    249(1)
    12.4 Dynamic Case
    250(4)
    12.4.1 Excitation-Response Relations
    250(2)
    12.4.2 Inverse Relations
    252(1)
    12.4.3 Control
    253(1)
    12.5 Recapitulation
    254(1)
    References 255
    Utku, Senol