List of Figures |
|
x | |
Preface |
|
xi | |
1 How to Measure Smoothness |
|
|
|
1 | (1) |
|
|
2 | (2) |
|
1.3 The Fourier-analytical approach |
|
|
4 | (5) |
|
|
9 | (3) |
|
|
12 | (7) |
|
|
12 | (3) |
|
|
15 | (3) |
|
1.5.3 A technical modification |
|
|
18 | (1) |
|
|
19 | (7) |
|
|
26 | (9) |
|
1.7.1 Mult iresolut ion analysis |
|
|
26 | (2) |
|
|
28 | (2) |
|
|
30 | (5) |
|
|
35 | (4) |
|
|
39 | (16) |
|
|
40 | (5) |
|
|
45 | (3) |
|
1.9.3 The super-critical case |
|
|
48 | (3) |
|
1.9.4 The sub-critical case |
|
|
51 | (1) |
|
1.9.5 Some generalisations and further references |
|
|
52 | (3) |
|
1.10 Compactness in quasi-Banach spaces |
|
|
55 | (3) |
|
1.11 Function spaces on domains |
|
|
58 | (20) |
|
1.11.1 General domains: definitions, embeddings |
|
|
58 | (2) |
|
1.11.2 General domains: entropy numbers |
|
|
60 | (1) |
|
1.11.3 General domains: atoms |
|
|
61 | (2) |
|
1.11.4 Lipschitz domains: definitions |
|
|
63 | (1) |
|
1.11.5 Lipschitz domains: extension |
|
|
64 | (2) |
|
1.11.6 Lipschitz domains: subspaces |
|
|
66 | (1) |
|
1.11.7 Lipschitz domains: approximation numbers |
|
|
67 | (2) |
|
1.11.8 Lipschitz domains: interpolation |
|
|
69 | (3) |
|
1.11.9 Characterisations by differences |
|
|
72 | (4) |
|
1.11.10 Lipschitz domains: Sobolev, Holder-Zygmund spaces |
|
|
76 | (1) |
|
1.11.11 General domains: sharp embeddings and envelopes |
|
|
77 | (1) |
|
|
78 | (7) |
|
1.12.1 An introduction to the non-smooth |
|
|
78 | (2) |
|
|
80 | (1) |
|
|
81 | (4) |
|
|
85 | (7) |
|
1.13.1 The classical theory |
|
|
85 | (2) |
|
1.13.2 The fractal theory |
|
|
87 | (5) |
|
1.14 Fractal characteristics of measures |
|
|
92 | (3) |
|
|
95 | (4) |
|
1.15.1 Some notation and basic assertions |
|
|
95 | (2) |
|
1.15.2 Traces and fractal operators |
|
|
97 | (2) |
|
|
99 | (2) |
|
1.17 Spaces on fractals and on quasi-metric spaces |
|
|
101 | (20) |
|
1.17.1 Fractal characteristics, revisited |
|
|
101 | (2) |
|
1.17.2 Traces and trace spaces |
|
|
103 | (6) |
|
1.17.3 Quarkonial representations |
|
|
109 | (3) |
|
1.17.4 Quasi-metric spaces |
|
|
112 | (3) |
|
1.17.5 Spaces on quasi-metric spaces |
|
|
115 | (4) |
|
1.17.6 Function spaces on d-spaces |
|
|
119 | (2) |
|
1.18 Fractal characteristics of distributions |
|
|
121 | (1) |
|
1.19 A black sheep becomes the king |
|
|
122 | (5) |
2 Atoms and Pointwise Multipliers |
|
|
2.1 Notation, definitions and basic assertions |
|
|
127 | (4) |
|
2.1.1 An introductory remark |
|
|
127 | (1) |
|
|
127 | (1) |
|
2.1.3 Spaces on Euclidean n-space |
|
|
128 | (2) |
|
|
130 | (1) |
|
2.2 Non-smooth atomic decompositions |
|
|
131 | (5) |
|
2.3 Pointwise multipliers and self-similar spaces |
|
|
136 | (11) |
|
2.3.1 Definitions and preliminaries |
|
|
136 | (1) |
|
2.3.2 Uniform and self-similar spaces |
|
|
137 | (3) |
|
2.3.3 Pointwise multipliers |
|
|
140 | (4) |
|
2.3.4 Comments and complements |
|
|
144 | (3) |
3 Wavelets |
|
|
3.1 Wavelet isomorphisms and wavelet bases |
|
|
147 | (14) |
|
|
147 | (2) |
|
|
149 | (4) |
|
|
153 | (4) |
|
|
157 | (2) |
|
3.1.5 Further wavelet isomorphisms |
|
|
159 | (2) |
|
|
161 | (25) |
|
3.2.1 Preliminaries and definitions |
|
|
161 | (3) |
|
3.2.2 Subatomic decompositions |
|
|
164 | (6) |
|
3.2.3 Wavelet frames for distributions |
|
|
170 | (4) |
|
3.2.4 Wavelet frames for functions |
|
|
174 | (6) |
|
3.2.5 Local smoothness theory |
|
|
180 | (6) |
|
|
186 | (7) |
|
|
186 | (4) |
|
|
190 | (3) |
4 Spaces on Domains, Wavelets, Sampling Numbers |
|
|
4.1 Spaces on Lipschitz domains |
|
|
193 | (10) |
|
|
193 | (1) |
|
|
194 | (1) |
|
4.1.3 Further spaces, some embeddings |
|
|
195 | (3) |
|
4.1.4 Intrinsic characterisations |
|
|
198 | (5) |
|
|
203 | (15) |
|
4.2.1 Wavelets in Euclidean n-space, revisited |
|
|
203 | (2) |
|
|
205 | (2) |
|
4.2.3 Refined localisation |
|
|
207 | (2) |
|
4.2.4 Wavelets in domains: positive smoothness |
|
|
209 | (5) |
|
4.2.5 Wavelets in domains: general smoothness |
|
|
214 | (4) |
|
|
218 | (10) |
|
|
218 | (2) |
|
|
220 | (2) |
|
|
222 | (6) |
|
|
228 | (7) |
|
4.4.1 Relations to other numbers |
|
|
228 | (3) |
|
4.4.2 Embedding constants |
|
|
231 | (4) |
5 Anisotropic Function Spaces |
|
|
5.1 Definitions and basic properties |
|
|
235 | (14) |
|
|
235 | (2) |
|
|
237 | (2) |
|
|
239 | (4) |
|
|
243 | (1) |
|
|
244 | (3) |
|
|
247 | (1) |
|
5.1.7 A comment on dual pairings |
|
|
248 | (1) |
|
|
249 | (7) |
|
5.2.1 Anisotropic multiresolution analysis |
|
|
249 | (3) |
|
|
252 | (4) |
|
5.3 The transference method |
|
|
256 | (7) |
|
|
256 | (2) |
|
|
258 | (1) |
|
|
258 | (2) |
|
5.3.4 Besov characteristics |
|
|
260 | (3) |
6 Weighted Function Spaces |
|
|
6.1 Definitions and basic properties |
|
|
263 | (5) |
|
|
263 | (1) |
|
|
263 | (2) |
|
|
265 | (2) |
|
|
267 | (1) |
|
|
268 | (5) |
|
6.3 A digression: Sequence spaces |
|
|
273 | (6) |
|
|
273 | (3) |
|
|
276 | (3) |
|
|
279 | (7) |
|
|
279 | (5) |
|
|
284 | (2) |
|
|
286 | (11) |
|
6.5.1 The transference method |
|
|
286 | (1) |
|
|
287 | (10) |
7 Fractal Analysis |
|
|
|
297 | (16) |
|
7.1.1 Definitions, basic properties |
|
|
297 | (3) |
|
7.1.2 Potentials and Fourier transforms |
|
|
300 | (3) |
|
7.1.3 Traces: general measures |
|
|
303 | (4) |
|
7.1.4 Traces: isotropic measures |
|
|
307 | (6) |
|
|
313 | (19) |
|
7.2.1 Characteristics of measures |
|
|
313 | (6) |
|
7.2.2 A digression: Adapted local means |
|
|
319 | (3) |
|
7.2.3 Characteristics of distributions |
|
|
322 | (10) |
|
|
332 | (13) |
|
7.3.1 Potentials and the regularity of measures |
|
|
332 | (7) |
|
7.3.2 Elliptic operators: general measures |
|
|
339 | (3) |
|
7.3.3 Elliptic operators: isotropic measures |
|
|
342 | (2) |
|
|
344 | (1) |
8 Function Spaces on Quasi-metric Spaces |
|
|
|
345 | (12) |
|
|
345 | (1) |
|
8.1.2 Quarkonial characterisations |
|
|
346 | (4) |
|
8.1.3 Atomic characterisations |
|
|
350 | (7) |
|
|
357 | (6) |
|
|
357 | (2) |
|
8.2.2 Snowflaked transforms |
|
|
359 | (4) |
|
|
363 | (8) |
|
|
363 | (2) |
|
8.3.2 Spaces of positive smoothness |
|
|
365 | (2) |
|
8.3.3 Spaces of arbitrary smoothness |
|
|
367 | (1) |
|
8.3.4 Spaces of restricted smoothness |
|
|
368 | (3) |
|
|
371 | (6) |
|
|
371 | (1) |
|
|
372 | (2) |
|
|
374 | (3) |
9 Function Spaces on Sets |
|
|
9.1 Introduction and reproducing formula |
|
|
377 | (4) |
|
|
377 | (1) |
|
9.1.2 Reproducing formula |
|
|
377 | (4) |
|
9.2 Spaces on Euclidean n-space |
|
|
381 | (9) |
|
9.2.1 Definitions and basic assertions |
|
|
381 | (5) |
|
|
386 | (4) |
|
|
390 | (7) |
|
9.3.1 Preliminaries and sequence spaces |
|
|
390 | (4) |
|
|
394 | (3) |
References |
|
397 | (20) |
Notational Agreements |
|
417 | (2) |
Symbols |
|
419 | (4) |
Index |
|
423 | |