Preface |
|
xvii | |
Series Preface |
|
xxiii | |
|
PART ONE PLANE IDEAL AERODYNAMICS |
|
|
|
|
3 | (22) |
|
1.1 Aerodynamic Force and Moment |
|
|
3 | (2) |
|
1.1.1 Motion of the Frame of Reference |
|
|
3 | (1) |
|
1.1.2 Orientation of the System of Coordinates |
|
|
4 | (1) |
|
1.1.3 Components of the Aerodynamic Force |
|
|
4 | (1) |
|
1.1.4 Formulation of the Aerodynamic Problem |
|
|
4 | (1) |
|
|
5 | (3) |
|
1.2.1 Wing Section Geometry |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
8 | (5) |
|
1.4.1 Equation of State: Compressibility and the Speed of Sound |
|
|
8 | (2) |
|
1.4.2 Rheology: Viscosity |
|
|
10 | (2) |
|
1.4.3 The International Standard Atmosphere |
|
|
12 | (1) |
|
1.4.4 Computing Air Properties |
|
|
12 | (1) |
|
|
13 | (5) |
|
1.5.1 Alternative methods |
|
|
16 | (1) |
|
1.5.2 Example: Using Octave to Solve a Linear System |
|
|
16 | (2) |
|
1.6 Example: NACA Report No. 502 |
|
|
18 | (1) |
|
|
19 | (3) |
|
|
22 | (1) |
|
|
22 | (3) |
|
|
25 | (22) |
|
2.1 Material Properties: The Perfect Fluid |
|
|
25 | (1) |
|
|
26 | (1) |
|
2.2.1 Governing Equations: Conservation Laws |
|
|
26 | (1) |
|
2.3 The Continuity Equation |
|
|
26 | (1) |
|
2.4 Mechanics: The Euler Equations |
|
|
27 | (3) |
|
2.4.1 Rate of Change of Momentum |
|
|
27 | (1) |
|
2.4.2 Forces Acting on a Fluid Particle |
|
|
28 | (1) |
|
2.4.3 The Euler Equations |
|
|
29 | (1) |
|
2.4.4 Accounting for Conservative External Forces |
|
|
29 | (1) |
|
2.5 Consequences of the Governing Equations |
|
|
30 | (5) |
|
2.5.1 The Aerodynamic Force |
|
|
30 | (3) |
|
2.5.2 Bernoulli's Equation |
|
|
33 | (1) |
|
2.5.3 Circulation, Vorticity, and Irrotational Flow |
|
|
33 | (2) |
|
|
35 | (1) |
|
|
35 | (6) |
|
2.6.1 Review of Complex Variables |
|
|
35 | (3) |
|
2.6.2 Analytic Functions and Plane Ideal Flow |
|
|
38 | (2) |
|
2.6.3 Example: the Polar Angle Is Nowhere Analytic |
|
|
40 | (1) |
|
2.7 The Complex Potential |
|
|
41 | (1) |
|
|
42 | (2) |
|
|
44 | (1) |
|
|
45 | (2) |
|
|
47 | (20) |
|
|
47 | (6) |
|
3.1.1 Divergence and Vorticity in Polar Coordinates |
|
|
48 | (1) |
|
|
48 | (1) |
|
3.1.3 Drawing Complex Velocity Fields with Octave |
|
|
49 | (1) |
|
3.1.4 Example: k = 1, Corner Flow |
|
|
50 | (1) |
|
3.1.5 Example: k = 0, Uniform Stream |
|
|
51 | (1) |
|
3.1.6 Example: k = -1, Source |
|
|
51 | (1) |
|
3.1.7 Example: k = -2, Doublet |
|
|
52 | (1) |
|
3.2 Multiplication by a Complex Constant |
|
|
53 | (1) |
|
3.2.1 Example: w = const., Uniform Stream with Arbitrary Direction |
|
|
53 | (1) |
|
3.2.2 Example: w = i/z, Vortex |
|
|
54 | (1) |
|
3.2.3 Example: Polar Components |
|
|
54 | (1) |
|
3.3 Linear Combinations of Complex Velocities |
|
|
54 | (2) |
|
3.3.1 Example: Circular Obstacle in a Stream |
|
|
54 | (2) |
|
3.4 Transforming the Whole Velocity Field |
|
|
56 | (1) |
|
3.4.1 Translating the Whole Velocity Field |
|
|
56 | (1) |
|
3.4.2 Example: Doublet as the Sum of a Source and Sink |
|
|
56 | (1) |
|
3.4.3 Rotating the Whole Velocity Field |
|
|
56 | (1) |
|
3.5 Circulation and Outflow |
|
|
57 | (4) |
|
3.5.1 Curve-integrals in Plane Ideal Flow |
|
|
57 | (1) |
|
3.5.2 Example: Numerical Line-integrals for Circulation and Outflow |
|
|
58 | (1) |
|
|
59 | (1) |
|
3.5.4 Example: Powers of z and Circles around the Origin |
|
|
60 | (1) |
|
3.6 More on the Scalar Potential and Stream Function |
|
|
61 | (1) |
|
3.6.1 The Scalar Potential and Irrotational Flow |
|
|
61 | (1) |
|
3.6.2 The Stream Function and Divergence-free Flow |
|
|
62 | (1) |
|
|
62 | (2) |
|
|
62 | (1) |
|
3.7.2 The Kutta-Joukowsky Theorem |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
67 | (12) |
|
4.1 Composition of Analytic Functions |
|
|
67 | (1) |
|
4.2 Mapping with Powers of ξ |
|
|
68 | (3) |
|
4.2.1 Example: Square Mapping |
|
|
68 | (1) |
|
4.2.2 Conforming Mapping by Contouring the Stream Function |
|
|
69 | (1) |
|
4.2.3 Example: Two-thirds Power Mapping |
|
|
69 | (1) |
|
|
70 | (1) |
|
|
71 | (1) |
|
4.3 Joukowsky's Transformation |
|
|
71 | (4) |
|
4.3.1 Unit Circle from a Straight Line Segment |
|
|
71 | (1) |
|
4.3.2 Uniform Flow and Flow over a Circle |
|
|
72 | (1) |
|
4.3.3 Thin Flat Plate at Nonzero Incidence |
|
|
73 | (1) |
|
4.3.4 Flow over the Thin Flat Plate with Circulation |
|
|
74 | (1) |
|
4.3.5 Joukowsky Aerofoils |
|
|
75 | (1) |
|
|
75 | (3) |
|
|
78 | (1) |
|
|
78 | (1) |
|
5 Flat Plate Aerodynamics |
|
|
79 | (14) |
|
5.1 Plane Ideal Flow over a Thin Flat Plate |
|
|
79 | (8) |
|
|
80 | (1) |
|
5.1.2 The Kutta-Joukowsky Condition |
|
|
80 | (1) |
|
5.1.3 Lift on a Thin Flat Plate |
|
|
81 | (1) |
|
5.1.4 Surface Speed Distribution |
|
|
82 | (1) |
|
5.1.5 Pressure Distribution |
|
|
83 | (1) |
|
5.1.6 Distribution of Circulation |
|
|
84 | (1) |
|
5.1.7 Thin Flat Plate as Vortex Sheet |
|
|
85 | (2) |
|
5.2 Application of Thin Aerofoil Theory to the Flat Plate |
|
|
87 | (2) |
|
5.2.1 Thin Aerofoil Theory |
|
|
87 | (1) |
|
5.2.2 Vortex Sheet along the Chord |
|
|
87 | (1) |
|
5.2.3 Changing the Variable of Integration |
|
|
88 | (1) |
|
|
88 | (1) |
|
5.2.5 The Kutta-Joukowsky Condition |
|
|
89 | (1) |
|
5.2.6 Circulation and Lift |
|
|
89 | (1) |
|
|
89 | (1) |
|
5.3.1 Centre of Pressure and Aerodynamic Centre |
|
|
90 | (1) |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
91 | (2) |
|
|
93 | (18) |
|
6.1 Thin Aerofoil Analysis |
|
|
93 | (5) |
|
6.1.1 Vortex Sheet along the Camber Line |
|
|
93 | (1) |
|
6.1.2 The Boundary Condition |
|
|
93 | (1) |
|
|
94 | (1) |
|
6.1.4 Glauert's Transformation |
|
|
95 | (1) |
|
6.1.5 Glauert's Expansion |
|
|
95 | (2) |
|
6.1.6 Fourier Cosine Decomposition of the Camber Line Slope |
|
|
97 | (1) |
|
6.2 Thin Aerofoil Aerodynamics |
|
|
98 | (3) |
|
6.2.1 Circulation and Lift |
|
|
98 | (1) |
|
6.2.2 Pitching Moment about the Leading Edge |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
101 | (1) |
|
6.3 Analytical Evaluation of Thin Aerofoil Integrals |
|
|
101 | (4) |
|
6.3.1 Example: the NACA Four-digit Wing Sections |
|
|
104 | (1) |
|
6.4 Numerical Thin Aerofoil Theory |
|
|
105 | (4) |
|
|
109 | (1) |
|
|
109 | (1) |
|
|
109 | (2) |
|
|
111 | (16) |
|
7.1 The Thin Flat Plate at Arbitrary Incidence, Again |
|
|
111 | (3) |
|
|
111 | (1) |
|
7.1.2 The Collocation Point |
|
|
111 | (1) |
|
7.1.3 Lumped Vortex Model of the Thin Flat Plate |
|
|
112 | (2) |
|
7.2 Using Two Lumped Vortices along the Chord |
|
|
114 | (3) |
|
|
116 | (1) |
|
7.3 Generalization to Multiple Lumped Vortex Panels |
|
|
117 | (1) |
|
|
117 | (1) |
|
7.4 General Considerations on Discrete Singularity Methods |
|
|
117 | (2) |
|
7.5 Lumped Vortex Elements for Thin Aerofoils |
|
|
119 | (4) |
|
7.5.1 Panel Chains for Camber Lines |
|
|
119 | (2) |
|
7.5.2 Implementation in Octave |
|
|
121 | (1) |
|
7.5.3 Comparison with Thin Aerofoil Theory |
|
|
122 | (1) |
|
7.6 Disconnected Aerofoils |
|
|
123 | (2) |
|
|
124 | (1) |
|
|
125 | (1) |
|
|
125 | (1) |
|
|
126 | (1) |
|
8 Panel Methods for Plane Flow |
|
|
127 | (16) |
|
8.1 Development of the CUSSSP Program |
|
|
127 | (10) |
|
8.1.1 The Singularity Elements |
|
|
127 | (2) |
|
8.1.2 Discretizing the Geometry |
|
|
129 | (2) |
|
8.1.3 The Influence Matrix |
|
|
131 | (1) |
|
8.1.4 The Right-hand Side |
|
|
132 | (2) |
|
8.1.5 Solving the Linear System |
|
|
134 | (1) |
|
|
135 | (2) |
|
|
137 | (2) |
|
|
138 | (1) |
|
|
139 | (1) |
|
|
139 | (1) |
|
8.4 Conclusion to Part I: The Origin of Lift |
|
|
139 | (4) |
|
PART TWO THREE-DIMENSIONAL IDEAL AERODYNAMICS |
|
|
|
9 Finite Wings and Three-Dimensional Flow |
|
|
143 | (14) |
|
|
143 | (2) |
|
9.1.1 Empirical Effect of Finite Span on Lift |
|
|
143 | (1) |
|
9.1.2 Finite Wings and Three-dimensional Flow |
|
|
143 | (2) |
|
9.2 Three-Dimensional Flow |
|
|
145 | (1) |
|
9.2.1 Three-dimensional Cartesian Coordinate System |
|
|
145 | (1) |
|
9.2.2 Three-dimensional Governing Equations |
|
|
145 | (1) |
|
9.3 Vector Notation and Identities |
|
|
145 | (4) |
|
9.3.1 Addition and Scalar Multiplication of Vectors |
|
|
145 | (1) |
|
9.3.2 Products of Vectors |
|
|
146 | (1) |
|
|
147 | (1) |
|
9.3.4 Integral Theorems for Vector Derivatives |
|
|
148 | (1) |
|
9.4 The Equations Governing Three-Dimensional Flow |
|
|
149 | (1) |
|
9.4.1 Conservation of Mass and the Continuity Equation |
|
|
149 | (1) |
|
9.4.2 Newton's Law and Euler's Equation |
|
|
149 | (1) |
|
|
150 | (4) |
|
9.5.1 Definition of Circulation in Three Dimensions |
|
|
150 | (1) |
|
9.5.2 The Persistence of Circulation |
|
|
151 | (1) |
|
9.5.3 Circulation and Vorticity |
|
|
151 | (2) |
|
9.5.4 Rotational Form of Euler's Equation |
|
|
153 | (1) |
|
9.5.5 Steady Irrotational Motion |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
155 | (2) |
|
10 Vorticity and Vortices |
|
|
157 | (12) |
|
10.1 Streamlines, Stream Tubes, and Stream Filaments |
|
|
157 | (2) |
|
|
157 | (1) |
|
10.1.2 Stream Tubes and Stream Filaments |
|
|
158 | (1) |
|
10.2 Vortex Lines, Vortex Tubes, and Vortex Filaments |
|
|
159 | (1) |
|
10.2.1 Strength of Vortex Tubes and Filaments |
|
|
159 | (1) |
|
10.2.2 Kinematic Properties of Vortex Tubes |
|
|
159 | (1) |
|
10.3 Helmholtz's Theorems |
|
|
159 | (1) |
|
10.3.1 `Vortex Tubes Move with the Flow' |
|
|
159 | (1) |
|
10.3.2 `The Strength of a Vortex Tube is Constant' |
|
|
160 | (1) |
|
|
160 | (1) |
|
10.4.1 The Two-dimensional Vortex |
|
|
160 | (1) |
|
10.4.2 Arbitrarily Oriented Rectilinear Vortex Filaments |
|
|
160 | (1) |
|
10.5 Segmented Vortex Filaments |
|
|
161 | (5) |
|
10.5.1 The Biot-Savart Law |
|
|
161 | (1) |
|
10.5.2 Rectilinear Vortex Filaments |
|
|
162 | (2) |
|
10.5.3 Finite Rectilinear Vortex Filaments |
|
|
164 | (1) |
|
10.5.4 Infinite Straight Line Vortices |
|
|
164 | (1) |
|
10.5.5 Semi-infinite Straight Line Vortex |
|
|
164 | (1) |
|
10.5.6 Truncating Infinite Vortex Segments |
|
|
165 | (1) |
|
10.5.7 Implementing Line Vortices in Octave |
|
|
165 | (1) |
|
|
166 | (1) |
|
|
167 | (1) |
|
|
167 | (2) |
|
|
169 | (16) |
|
11.1 Basic Assumptions of Lifting Line Theory |
|
|
169 | (1) |
|
11.2 The Lifting Line, Horseshoe Vortices, and the Wake |
|
|
169 | (4) |
|
11.2.1 Deductions from Vortex Theorems |
|
|
169 | (1) |
|
11.2.2 Deductions from the Wing Pressure Distribution |
|
|
170 | (1) |
|
11.2.3 The Lifting Line Model of Air Flow |
|
|
170 | (1) |
|
|
170 | (1) |
|
11.2.5 Continuous Trailing Vortex Sheet |
|
|
171 | (1) |
|
11.2.6 The Form of the Wake |
|
|
172 | (1) |
|
11.3 The Effect of Downwash |
|
|
173 | (1) |
|
11.3.1 Effect on the Angle of Incidence: Induced Incidence |
|
|
173 | (1) |
|
11.3.2 Effect on the Aerodynamic Force: Induced Drag |
|
|
174 | (1) |
|
11.4 The Lifting Line Equation |
|
|
174 | (4) |
|
11.4.1 Glauert's Solution of the Lifting Line Equation |
|
|
175 | (1) |
|
11.4.2 Wing Properties in Terms of Glauert's Expansion |
|
|
176 | (2) |
|
11.5 The Elliptic Lift Loading |
|
|
178 | (2) |
|
11.5.1 Properties of the Elliptic Lift Loading |
|
|
179 | (1) |
|
11.6 Lift-Incidence Relation |
|
|
180 | (2) |
|
11.6.1 Linear Lift-Incidence Relation |
|
|
181 | (1) |
|
11.7 Realizing the Elliptic Lift Loading |
|
|
182 | (1) |
|
11.7.1 Corrections to the Elliptic Loading Approximation |
|
|
182 | (1) |
|
|
182 | (1) |
|
|
183 | (1) |
|
|
183 | (2) |
|
12 Nonelliptic Lift Loading |
|
|
185 | (8) |
|
12.1 Solving the Lifting Line Equation |
|
|
185 | (3) |
|
12.1.1 The Sectional Lift-Incidence Relation |
|
|
185 | (1) |
|
12.1.2 Linear Sectional Lift-Incidence Relation |
|
|
185 | (1) |
|
12.1.3 Finite Approximation: Truncation and Collocation |
|
|
185 | (2) |
|
12.1.4 Computer Implementation |
|
|
187 | (1) |
|
12.1.5 Example: a Rectangular Wing |
|
|
187 | (1) |
|
12.2 Numerical Convergence |
|
|
188 | (1) |
|
12.3 Symmetric Spanwise Loading |
|
|
189 | (3) |
|
12.3.1 Example: Exploiting Symmetry |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
192 | (1) |
|
13 Lumped Horseshoe Elements |
|
|
193 | (16) |
|
13.1 A Single Horseshoe Vortex |
|
|
193 | (2) |
|
13.1.1 Induced Incidence of the Lumped Horseshoe Element |
|
|
195 | (1) |
|
13.2 Multiple Horseshoes along the Span |
|
|
195 | (5) |
|
13.2.1 A Finite-step Lifting Line in Octave |
|
|
197 | (3) |
|
13.3 An Improved Discrete Horseshoe Model |
|
|
200 | (3) |
|
13.4 Implementing Horseshoe Vortices in Octave |
|
|
203 | (3) |
|
13.4.1 Example: Yawed Horseshoe Vortex Coefficients |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
207 | (1) |
|
|
207 | (2) |
|
14 The Vortex Lattice Method |
|
|
209 | (16) |
|
14.1 Meshing the Mean Lifting Surface of a Wing |
|
|
209 | (3) |
|
14.1.1 Plotting the Mesh of a Mean Lifting Surface |
|
|
210 | (2) |
|
14.2 A Vortex Lattice Method |
|
|
212 | (4) |
|
14.2.1 The Vortex Lattice Equations |
|
|
213 | (2) |
|
14.2.2 Unit Normals to the Vortex-lattice |
|
|
215 | (1) |
|
|
215 | (1) |
|
14.2.4 Postprocessing Vortex Lattice Methods |
|
|
215 | (1) |
|
14.3 Examples of Vortex Lattice Calculations |
|
|
216 | (4) |
|
14.3.1 Campbell's Flat Swept Tapered Wing |
|
|
216 | (2) |
|
14.3.2 Bertin's Flat Swept Untapered Wing |
|
|
218 | (1) |
|
14.3.3 Spanwise and Chordwise Refinement |
|
|
219 | (1) |
|
|
220 | (1) |
|
|
221 | (1) |
|
14.5.1 Three-dimensional Panel Methods |
|
|
222 | (1) |
|
|
222 | (3) |
|
PART THREE NONIDEAL FLOW IN AERODYNAMICS |
|
|
|
|
225 | (12) |
|
15.1 Cauchy's First Law of Continuum Mechanics |
|
|
225 | (2) |
|
15.2 Rheological Constitutive Equations |
|
|
227 | (1) |
|
|
227 | (1) |
|
15.2.2 Linearly Viscous Fluid |
|
|
227 | (1) |
|
15.3 The Navier-Stokes Equations |
|
|
228 | (1) |
|
15.4 The No-Slip Condition and the Viscous Boundary Layer |
|
|
228 | (1) |
|
15.5 Unidirectional Flows |
|
|
229 | (1) |
|
15.5.1 Plane Couette and Poiseuille Flows |
|
|
229 | (1) |
|
15.6 A Suddenly Sliding Plate |
|
|
230 | (4) |
|
15.6.1 Solution by Similarity Variable |
|
|
230 | (3) |
|
15.6.2 The Diffusion of Vorticity |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
234 | (1) |
|
|
235 | (2) |
|
16 Boundary Layer Equations |
|
|
237 | (14) |
|
16.1 The Boundary Layer over a Flat Plate |
|
|
237 | (4) |
|
16.1.1 Scales in the Conservation of Mass |
|
|
237 | (1) |
|
16.1.2 Scales in the Streamwise Momentum Equation |
|
|
238 | (1) |
|
16.1.3 The Reynolds Number |
|
|
239 | (1) |
|
16.1.4 Pressure in the Boundary Layer |
|
|
239 | (1) |
|
16.1.5 The Transverse Momentum Balance |
|
|
239 | (1) |
|
16.1.6 The Boundary Layer Momentum Equation |
|
|
240 | (1) |
|
16.1.7 Pressure and External Tangential Velocity |
|
|
241 | (1) |
|
16.1.8 Application to Curved Surfaces |
|
|
241 | (1) |
|
16.2 Momentum Integral Equation |
|
|
241 | (2) |
|
16.3 Local Boundary Layer Parameters |
|
|
243 | (5) |
|
16.3.1 The Displacement and Momentum Thicknesses |
|
|
243 | (1) |
|
16.3.2 The Skin Friction Coefficient |
|
|
243 | (1) |
|
16.3.3 Example: Three Boundary Layer Profiles |
|
|
244 | (4) |
|
|
248 | (1) |
|
|
249 | (1) |
|
|
249 | (2) |
|
17 Laminar Boundary Layers |
|
|
251 | (12) |
|
17.1 Boundary Layer Profile Curvature |
|
|
251 | (1) |
|
17.1.1 Pressure Gradient and Boundary Layer Thickness |
|
|
252 | (1) |
|
17.2 Pohlhausen's Quartic Profiles |
|
|
252 | (2) |
|
17.3 Thwaites's Method for Laminar Boundary Layers |
|
|
254 | (6) |
|
|
255 | (1) |
|
17.3.2 Correlations for Shape Factor and Skin Friction |
|
|
256 | (1) |
|
17.3.3 Example: Zero Pressure Gradient |
|
|
256 | (1) |
|
17.3.4 Example: Laminar Separation from a Circular Cylinder |
|
|
257 | (3) |
|
|
260 | (1) |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
263 | (10) |
|
18.1 Steady-State Conservation of Mass |
|
|
263 | (2) |
|
18.2 Longitudinal Variation of Stream Tube Section |
|
|
265 | (1) |
|
18.2.1 The Design of Supersonic Nozzles |
|
|
266 | (1) |
|
18.3 Perfect Gas Thermodynamics |
|
|
266 | (4) |
|
18.3.1 Thermal and Caloric Equations of State |
|
|
266 | (1) |
|
18.3.2 The First Law of Thermodynamics |
|
|
267 | (1) |
|
18.3.3 The Isochoric and Isobaric Specific Heat Coefficients |
|
|
267 | (1) |
|
18.3.4 Isothermal and Adiabatic Processes |
|
|
267 | (1) |
|
18.3.5 Adiabatic Expansion |
|
|
268 | (1) |
|
18.3.6 The Speed of Sound and Temperature |
|
|
269 | (1) |
|
18.3.7 The Speed of Sound and the Speed |
|
|
269 | (1) |
|
18.3.8 Thermodynamic Characteristics of Air |
|
|
270 | (1) |
|
18.3.9 Example: Stagnation Temperature |
|
|
270 | (1) |
|
|
270 | (1) |
|
|
271 | (1) |
|
|
271 | (2) |
|
19 Linearized Compressible Flow |
|
|
273 | (14) |
|
19.1 The Nonlinearity of the Equation for the Potential |
|
|
273 | (1) |
|
19.2 Small Disturbances to the Free-Stream |
|
|
274 | (1) |
|
19.3 The Uniform Free-Stream |
|
|
275 | (1) |
|
19.4 The Disturbance Potential |
|
|
275 | (1) |
|
19.5 Prandtl-Glauert Transformation |
|
|
276 | (3) |
|
19.5.1 Fundamental Linearized Compressible Flows |
|
|
277 | (1) |
|
19.5.2 The Speed of Sound |
|
|
278 | (1) |
|
19.6 Application of the Prandtl-Glauert Rule |
|
|
279 | (5) |
|
19.6.1 Transforming the Geometry |
|
|
279 | (1) |
|
19.6.2 Computing Aerodynamical Forces |
|
|
280 | (2) |
|
19.6.3 The Prandtl-Glauert Rule in Two Dimensions |
|
|
282 | (2) |
|
19.6.4 The Critical Mach Number |
|
|
284 | (1) |
|
|
284 | (1) |
|
|
285 | (1) |
|
|
285 | (1) |
|
|
286 | (1) |
|
Appendix A Notes on Octave Programming |
|
|
287 | (6) |
|
|
287 | (1) |
|
|
287 | (3) |
|
A.2.1 Iterating Explicitly |
|
|
288 | (1) |
|
A.2.2 Preallocating Memory |
|
|
288 | (1) |
|
A.2.3 Vectorizing Function Calls |
|
|
288 | (1) |
|
A.2.4 Many Functions Act Elementwise on Arrays |
|
|
289 | (1) |
|
A.2.5 Functions Primarily Defined for Arrays |
|
|
289 | (1) |
|
A.2.6 Elementwise Arithmetic with Single Numbers |
|
|
289 | (1) |
|
A.2.7 Elementwise Arithmetic between Arrays |
|
|
290 | (1) |
|
A.2.8 Vector and Matrix Multiplication |
|
|
290 | (1) |
|
|
290 | (1) |
|
A.3.1 Creating Tables with bsxfun |
|
|
290 | (1) |
|
|
291 | (1) |
|
A.4.1 Indexing by Logical Masks |
|
|
291 | (1) |
|
A.4.2 Indexing Numerically |
|
|
291 | (1) |
|
A.5 Just-in-Time Compilation |
|
|
291 | (1) |
|
|
292 | (1) |
|
|
292 | (1) |
Glossary |
|
293 | (12) |
Nomenclature |
|
305 | (4) |
Index |
|
309 | |