Muutke küpsiste eelistusi

E-raamat: Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows

(Professor, Department of Engineering Mechanics, Tsinghua University, Beijing, China)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 25-Jan-2018
  • Kirjastus: Butterworth-Heinemann Inc
  • Keel: eng
  • ISBN-13: 9780128134665
  • Formaat - PDF+DRM
  • Hind: 103,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 25-Jan-2018
  • Kirjastus: Butterworth-Heinemann Inc
  • Keel: eng
  • ISBN-13: 9780128134665

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows gives a systematic account of the fundamentals of multiphase flows, turbulent flows and combustion theory. It presents the latest advances of models and theories in the field of dispersed multiphase turbulent reacting flow, covering basic equations of multiphase turbulent reacting flows, modeling of turbulent flows, modeling of multiphase turbulent flows, modeling of turbulent combusting flows, and numerical methods for simulation of multiphase turbulent reacting flows, etc. The book is ideal for graduated students, researchers and engineers in many disciplines in power and mechanical engineering.

  • Provides a combination of multiphase fluid dynamics, turbulence theory and combustion theory
  • Covers physical phenomena, numerical modeling theory and methods, and their applications
  • Presents applications in a wide range of engineering facilities, such as utility and industrial furnaces, gas-turbine and rocket engines, internal combustion engines, chemical reactors, and cyclone separators, etc.

Muu info

A systematic account of the latest advances of models and theories in the field of dispersed multiphase turbulent reacting flow
Preface xi
Nomenclature xiii
Introduction xv
1 Some Fundamentals of Dispersed Multiphase Flows
1(8)
1.1 Particle/Spray Basic Properties
1(1)
1.1.1 Particle/Droplet Size and Its Distribution
1(1)
1.1.2 Apparent Density and Volume Fraction
2(1)
1.2 Particle Drag, Heat, and Mass Transfer
2(1)
1.3 Single-Particle Dynamics
3(6)
1.3.1 Single-Particle Motion Equation
3(1)
1.3.2 Motion of a Single Particle in a Uniform Flow Field
4(1)
1.3.3 Particle Gravitational Deposition
4(1)
1.3.4 Forces Acting on Particles in Nonuniform Flow Field
5(1)
1.3.4.1 Magnus Force
5(1)
1.3.4.2 Saffman Force
5(1)
1.3.4.3 Particle Thermophoresis, Electrophoresis, and Photophoresis
5(1)
1.3.5 Generalized Particle Motion Equation
6(1)
1.3.6 Recent Studies on Particle Dynamics
6(1)
References
7(1)
Further Reading
8(1)
2 Basic Concepts and Description of Turbulence
9(6)
2.1 Introduction
9(1)
2.2 Time Averaging
9(1)
2.3 Probability Density Function
10(2)
2.4 Correlations, Length, and Time Scales
12(3)
References
13(2)
3 Fundamentals of Combustion Theory
15(56)
3.1 Combustion and Flame
15(1)
3.2 Basic Equations of Laminar Multicomponent Reacting Flows and Combustion
16(14)
3.2.1 Thermodynamic Relationships of Multicomponent Gases
16(2)
3.2.2 Molecular Transport Laws of Multicomponent Reacting Gases
18(1)
3.2.3 Basic Relationships of Chemical Kinetics
19(1)
3.2.4 The Reynolds Transport Theorem
20(1)
3.2.5 Continuity and Diffusion Equations
21(1)
3.2.6 Momentum Equation
22(1)
3.2.7 Energy Equation
23(3)
3.2.8 Boundary Conditions at the Interface and Stefan Flux
26(4)
3.3 Ignition and Extinction
30(11)
3.3.1 Basic Concept
30(1)
3.3.2 Dimensional Analysis
30(1)
3.3.3 Ignition in an Enclosed Vessel---Simonov's Unsteady Model
31(3)
3.3.4 Ignition Lag (Induction Period)
34(1)
3.3.5 Ignition by a Hot Plate---Khitrin--Goldenberg Model
35(2)
3.3.6 Ignition and Extinction---Vulis Model
37(4)
3.4 Laminar Premixed and Diffusion Combustion
41(6)
3.4.1 Background
41(1)
3.4.2 Basic Equations and Their Properties
41(2)
3.4.3 Two-Zone Approximate Solution
43(3)
3.4.4 Laminar Diffusion Flame
46(1)
3.5 Droplet Evaporation and Combustion
47(7)
3.5.1 Background
47(1)
3.5.2 Droplet Evaporation in Stagnant Air
48(1)
3.5.3 Basic Equations for Droplet Evaporation and Combustion
48(1)
3.5.4 Droplet Evaporation With and Without Combustion
49(1)
3.5.5 Droplet Evaporation and Combustion under Forced Convection
50(2)
3.5.6 The d2 Law
52(1)
3.5.7 Experimental Results
52(2)
3.5.8 Droplet Ignition and Extinction
54(1)
3.6 Solid-Fuel: Coal-Particle Combustion
54(10)
3.6.1 Background
54(1)
3.6.2 Coal Pyrolyzation (Devolatilization)
55(1)
3.6.3 Carbon Oxidation
56(1)
3.6.4 Carbon Oxidation---Basic Equations
56(1)
3.6.5 Carbon Oxidation---Single-Flame-Surface Model-Only Reaction 1 or 2 at the Surface
57(3)
3.6.6 Carbon Oxidation---Two-Flame-Surface Model
60(2)
3.6.7 Coal-Particle Combustion
62(2)
3.7 Turbulent Combustion and Flame Stabilization
64(5)
3.7.1 Background
64(1)
3.7.2 Turbulent Jet Diffusion Flame
64(2)
3.7.3 Turbulent Premixed Flame---Damkohler--Shelkin's Wrinkled-Flame Model
66(1)
3.7.4 Turbulent Premixed Flame---Summerfield--Shetinkov's Volume Combustion Model
67(1)
3.7.5 Flame Stabilization
67(2)
3.8 Conclusion on Combustion Fundamentals
69(2)
References
69(2)
4 Basic Equations of Multiphase Turbulent Reacting Flows
71(18)
4.1 The Control Volume in a Multiphase-Flow System
71(1)
4.2 The Concept of Volume Averaging
72(1)
4.3 "Microscopic" Conservation Equations Inside Each Phase
73(1)
4.4 The Volume-Averaged Conservation Equations for Laminar/Instantaneous Multiphase Flows
73(5)
4.5 The Reynolds-Averaged Equations for Dilute Multiphase Turbulent Reacting Flows
78(2)
4.6 The PDF Equations for Turbulent Two-Phase Flows and Statistically Averaged Equations
80(3)
4.7 The Two-Phase Reynolds Stress and Scalar Transport Equations
83(6)
References
87(2)
5 Modeling of Single-Phase Turbulence
89(32)
5.1 Introduction
89(1)
5.2 The Closure of Single-Phase Turbulent Kinetic Energy Equation
90(2)
5.3 The k-e Two-Equation Model and Its Application
92(4)
5.4 The Second-Order Moment Closure of Single-Phase Turbulence
96(3)
5.5 The Closed Model of Reynolds Stresses and Heat Fluxes
99(2)
5.6 The Algebraic Stress and Flux Models---Extended k-ε Model
101(2)
5.7 The Application of DSM and ASM Models and Their Comparison with Other Models
103(9)
5.8 Large-Eddy Simulation
112(4)
5.8.1 Filtration
112(1)
5.8.2 SGS Stress Models
113(1)
5.8.3 LES of Swirling Gas Flows
114(2)
5.9 Direct Numerical Simulation
116(5)
References
119(2)
6 Modeling of Dispersed Multiphase Turbulent Flows
121(62)
6.1 Introduction
121(3)
6.2 The Hinze--Tchen's Algebraic Model of Particle Turbulence
124(1)
6.3 The Unified Second-Order Moment Two-Phase Turbulence Model
124(4)
6.4 The k -- ε -- kp and k -- ε -- Ap Two-Phase Turbulence Model
128(1)
6.5 The Application and Validation of USM, k -- ε -- kp--kpg and k -- ε -- Ap Models
129(5)
6.6 An Improved Second-Order Moment Two-Phase Turbulence Model
134(2)
6.7 The Mass-Weighted Averaged USM Two-Phase Turbulence Model
136(5)
6.8 The DSM-PDF and k -- ε -PDF Two-Phase Turbulence Models
141(3)
6.9 An SOM-MC Model of Swirling Gas-Particle Flows
144(2)
6.10 The Nonlinear k -- ε -- kp Two-Phase Turbulence Model
146(4)
6.11 The Kinetic Theory Modeling of Dense Particle (Granular) Flows
150(3)
6.12 Two-Phase Turbulence Models for Dense Gas-Particle Flows
153(2)
6.13 The Eulerian---Lagrangian Simulation of Gas-Particle Flows
155(8)
6.13.1 Governing Equations for the Deterministic Trajectory Model
156(1)
6.13.2 Modification for Particle Turbulent Diffusion
157(2)
6.13.3 The Stochastic Trajectory Model
159(2)
6.13.4 The DEM Simulation of Dense Gas-Particle Flows
161(2)
6.14 The Large-Eddy Simulation of Turbulent Gas-Particle Flows
163(9)
6.14.1 Eulerian---Lagrangian LES of Swirling Gas-Particle Flows
165(1)
6.14.2 Eulerian---Lagrangian LES of Bubble-Liquid Flows
166(1)
6.14.3 Two-Fluid LES of Swirling Gas-Particle Flows
167(3)
6.14.4 Application of LES in Engineering Gas-Particle Flows
170(2)
6.15 The Direct Numerical Simulation of Dispersed Multiphase Flows
172(11)
References
177(6)
7 Modeling of Turbulent Combustion
183(70)
7.1 Introduction
183(1)
7.2 The Time-Averaged Reaction Rate
183(1)
7.3 The Eddy-Break-Up (EBU) Model/Eddy Dissipation Model (EDM)
184(2)
7.4 The Presumed PDF Models
186(12)
7.4.1 The Probability Density Distribution Function
186(1)
7.4.2 The Simplified PDF-Local Instantaneous Nonpremixed Fast-Chemistry Model
187(4)
7.4.3 The Simplified PDF-Local Instantaneous Equilibrium Model
191(3)
7.4.4 The Simplified-PDF Finite-Rate Model
194(4)
7.5 The PDF Transport Equation Model
198(2)
7.6 The Bray---Moss---Libby (BML) Model
200(1)
7.7 The Conditional Moment Closure (CMC) Model
201(1)
7.8 The Laminar-Flamelet Model
202(2)
7.9 The Second-Order Moment Combustion Model
204(11)
7.9.1 The Early Developed Second-Order Moment Model
204(3)
7.9.2 An Updated Second-Order Moment (SOM) Model
207(1)
7.9.3 Application of the SOM Model in RANS Modeling
208(4)
7.9.4 Validation of the SOM Model by DNS
212(3)
7.10 Modeling of Turbulent Two-Phase Combustion
215(9)
7.10.1 Two-Fluid Modeling of Turbulent Two-Phase Combustion
216(2)
7.10.2 Two-Fluid-Simulation of Coal Combustion in a Combustor with High-Velocity Jets
218(3)
7.10.3 Two-Fluid Modeling of Coal Combustion and NO Formation in a Swirl Combustor
221(2)
7.10.4 Eulerian--Lagrangian Modeling of Two-Phase Combustion
223(1)
7.11 Large-Eddy Simulation of Turbulent Combustion
224(18)
7.11.1 LES Equations and Closure Models for Simulating Gas Turbulent Combustion
224(2)
7.11.2 LES of Swirling Diffusion Combustion, Jet Diffusion Combustion, and Bluff-Body Premixed Combustion
226(6)
7.11.3 LES of Ethanol-Air Spray Combustion
232(3)
7.11.4 LES of Swirling Coal Combustion
235(7)
7.12 Direct Numerical Simulation of Turbulent Combustion
242(11)
References
249(4)
8 The Solution Procedure for Modeling Multiphase Turbulent Reacting Flows
253(8)
8.1 The PSIC Algorithm for Eulerian--Lagrangian Models
253(3)
8.2 The LEAGAP Algorithm for E---E---L Modeling
256(1)
8.3 The PERT Algorithm for Eulerian---Eulerian Modeling
257(1)
8.4 The GENMIX-2P and IPSA Algorithms for Eulerian---Eulerian Modeling
257(4)
References
260(1)
9 Simulation of Flows and Combustion in Practical Fluid Machines, Combustors, and Furnaces
261(50)
9.1 An Oil-Water Hydrocyclone
261(1)
9.2 A Gas-Solid Cyclone Separator
262(4)
9.3 A Nonslagging Vortex Coal Combustor
266(2)
9.4 A Spouting-Cyclone Coal Combustor
268(5)
9.5 Pulverized-Coal Furnaces
273(17)
9.6 Spray Combustors
290(17)
9.7 Concluding Remarks
307(4)
References
308(3)
Index 311
Prof. Zhou is a leading scientist in CFD modeling of multiphase flows of combustion in China. He got his Ph.D. degree from the Leningrad Polytechnic University, former USSR in 1961. He was once the Chairman of Multiphase Fluid Dynamics Division, the Chinese Society of Theoretical and Applied Mechanics, and was a member of the Board of Directors in the Chinese Section of the Combustion Institute. He also served in the Governing Board of the International Conference on Multiphase Flow. Currently, he continues to play an active role in many scientific committees of international symposiums on multiphase flow and combustion. Prof. Zhous research area is numerical simulation of multiphase turbulent flows and combustion. His main contribution lies in the theory of particle turbulence and a new SOM” modeling theory of turbulence-chemistry interaction. He won the China National Awards of Natural Science in 2007, Science and Technology Progress Awards of First Degree by the Ministry of Education and the Ministry of Electricity of PRC in 1995, and China National Awards of Excellent Scientific Books of First Degree in 1992.He has published one monograph in English and 5 monographs in Chinese, and more than 360 articles in journals and international conferences. He is the author of following two books: Theory and Numerical Modeling of Turbulent Gas-Particle Flows and Combustion (in English)” in 1993, and Dynamics of Multiphase Turbulent Reacting Fluid Flows (in Chinese)” in 2002. The proposed new book will be the extended and revised English edition of these books, providing the latest research advances and the achievements of Prof. Zhou and his colleagues in the last two decades.