Muutke küpsiste eelistusi

E-raamat: Theory and Practice of Modern Antenna Range Measurements

(Nearfield Systems Inc., USA), (Queen Mary University of London, UK), (SELEX ES Edinburgh, UK), (Nearfield Systems Inc., USA)
  • Formaat: PDF+DRM
  • Sari: Electromagnetic Waves
  • Ilmumisaeg: 12-Nov-2014
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781849195638
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 273,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Electromagnetic Waves
  • Ilmumisaeg: 12-Nov-2014
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781849195638
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a comprehensive introduction and explanation of both the theory and practice of all forms of modern antenna measurements, from their most basic postulates and assumptions to the intricate details of their application in various demanding modern measurement scenarios.



Theory and Practice of Modern Antenna Range Measurements begins with an initial examination of the properties of antennas that allow them to enhance the free space interaction of electronic systems, followed by an introduction to direct far-field measurements. The text presents a comprehensive treatment of Compact Antenna Test Ranges, Body-Centric measurements, and detailed developments of standard planar, cylindrical and spherical near-field techniques. Detailed discussions are also provided on near-field range error budgets which are an indispensable part of antenna metrology. The book concludes with some of the most recent advances in the various measurement techniques including aperture diagnostics, phase-less antenna metrology, error correction, range multi-path suppression techniques, and gain measurements. Extensive examples illustrate the concepts and techniques.



A large number of antenna test facilities exist worldwide but to the authors' knowledge no single text provides a clear step-by-step description of all the details of the Planar, Cylindrical, Spherical Near-Field, Compact Range and Body-centric Measurement Techniques. All four authors have spent a significant proportion of their professional careers involved with antenna measurements and the aim of this text is to provide the reader with a complete, coherent, comprehensive and practical text that will act as a single reference for all aspects of modern antenna measurements.
Preface xiii
Author biographies xvii
List of abbreviations xix
1 Introduction 1(28)
1.1 The phenomena of antenna coupling
1(2)
1.2 Characterisation via a measurement process
3(3)
1.3 Measurable properties of antennas
6(17)
1.3.1 Antenna gain and directivity
9(2)
1.3.2 Antenna cross-section
11(2)
1.3.3 Free-space radiation pattern
13(5)
1.3.4 Polarisation
18(1)
1.3.5 The far-field
19(2)
1.3.6 The phase in the measurement
21(1)
1.3.7 Reciprocity
22(1)
1.3.8 Measurement limitations
23(1)
1.4 The content of this text
23(3)
References
26(3)
2 EM theory and the mechanism behind antenna coupling 29(34)
2.1 Maxwell's classical electromagnetic field theory
29(1)
2.2 Electric charge and EM fields
30(4)
2.3 Power flux in an EM field
34(4)
2.4 Maxwell's equations
38(4)
2.5 The electric and magnetic potentials
42(11)
2.5.1 Static potentials
42(1)
2.5.2 Retarded potentials
43(10)
2.6 The inapplicability of source excitation as a measurement methodology
53(1)
2.7 Field equivalence principle
53(3)
2.8 Characterising vector electromagnetic fields
56(2)
2.9 Reflection and scattering of electromagnetic fields by extended objects
58(1)
2.10 Antenna port definition
59(2)
2.11 Summary
61(1)
References
62(1)
3 Antenna measurements 63(30)
3.1 Antenna measurements and alignment
63(1)
3.2 Rotation methodologies
64(2)
3.3 Far-field ranges
66(1)
3.4 Free-space conditions
67(10)
3.5 Alternatives to far-field ranges
77(3)
3.5.1 The compact antenna test range
77(3)
3.6 Indirect measurements
80(5)
3.6.1 Spherical near-field ranges
81(2)
3.6.2 Planar near-field measurements
83(1)
3.6.3 Cylindrical near-field measurements
83(2)
3.7 Other geometries for scanning measurements
85(1)
3.8 Attributes common to all near-field measurement techniques
86(3)
3.8.1 The scanning probe
86(1)
3.8.2 Generic near-field antenna measurement process
87(2)
3.9 Summary
89(1)
References
90(3)
4 Compact range measurements 93(78)
4.1 Introduction
93(3)
4.2 Collimation of electromagnetic fields
96(25)
4.2.1 Reflector edge diffraction
99(10)
4.2.2 Feed spillover
109(1)
4.2.3 Lenses as collimators
110(1)
4.2.4 Hologram CATRs
111(2)
4.2.5 Reflector surface errors and panel gaps
113(4)
4.2.6 Time-gating and the absorber-less chamber
117(4)
4.3 Types of ranges and their design issues
121(4)
4.3.1 Single offset reflector CATR
121(1)
4.3.2 Dual cylindrical reflector CATR
122(1)
4.3.3 Dual shaped reflector CATR
122(1)
4.3.4 Tri-reflector CATR
122(2)
4.3.5 Hologram CATR
124(1)
4.3.6 Lens CATR
125(1)
4.4 Quiet zones and performance evaluation
125(23)
4.4.1 How does a CATR actually work?
125(10)
4.4.2 Measurement of the quiet zone by field probing
135(2)
4.4.3 Phase-less quiet zone scanning
137(1)
4.4.4 Quiet zone evaluation using RCS of a known target
138(2)
4.4.5 Improving measured CATR patterns
140(6)
4.4.6 Feed scanning for static AUT measurements
146(2)
4.5 Radiation pattern and power parameter measurement
148(6)
4.5.1 Radiation pattern measurement
148(2)
4.5.2 Power parameter measurement
150(4)
4.6 Radar cross-section measurements
154(10)
4.6.1 RCS measurement in a CATR
154(4)
4.6.2 Sources of RCS measurement error in a CATR
158(2)
4.6.3 RCS model towers
160(1)
4.6.4 Time-gating for RCS
160(2)
4.6.5 Target imaging
162(2)
References
164(7)
5 Planar near-field antenna measurements 171(40)
5.1 Introduction
171(1)
5.2 Near-field measurement facility
171(6)
5.2.1 RF sub-system
172(3)
5.2.2 Robotics positioner system
175(2)
5.2.3 Near-field probe
177(1)
5.3 Limitations in the accuracy of the near-field measurement data
177(3)
5.3.1 Mechanically based limitations
177(1)
5.3.2 RF system limitations
178(2)
5.4 Solution of Maxwell's equations in Cartesian coordinates
180(2)
5.4.1 Plane wave spectrum
180(2)
5.5 Probe pattern compensation
182(5)
5.5.1 Effect of the probe pattern on far-field data
184(2)
5.5.2 Scanning probe characteristics
186(1)
5.6 Plane-polar near-field antenna measurements
187(20)
5.6.1 Application of spectral methods to plane-polar antenna measurements
187(9)
5.6.2 Conventional and alternate plane acquisition types
196(4)
5.6.3 Plane-polar alignment
200(7)
5.7 Summary
207(1)
References
208(3)
6 Cylindrical near-field antenna measurements 211(76)
6.1 Introduction
211(5)
6.2 Solution of Maxwell's equation in cylindrical coordinates
216(3)
6.3 Solution of the scalar wave equation in cylindrical coordinates
219(10)
6.4 Construction of vector fields
229(6)
6.5 Derivation of cylindrical mode coefficients from cylindrical near-field data
235(10)
6.5.1 Orthogonality properties of cylindrical wave vectors
235(5)
6.5.2 Determining cylindrical mode coefficients from measured near-electric field components
240(5)
6.6 Derivation of asymptotic far-field parameters from cylindrical mode coefficients
245(7)
6.7 Development of the transmission formula
252(15)
6.7.1 The coupling equation - derivation of probe-compensated cylindrical near-field antenna measurements
253(2)
6.7.2 Probe and test antenna
255(6)
6.7.3 Effect of probe compensation in cylindrical near-field measurements
261(3)
6.7.4 Calculation of probe cylindrical mode coefficients from far-field data
264(3)
6.8 Sampling requirements for cylindrical near-field measurements
267(7)
6.9 Implementation of cylindrical near-field to far-field transformation
274(5)
6.10 Conical near-field antenna measurements
279(5)
6.11 Summary
284(1)
References
285(2)
7 Spherical near-field antenna measurements 287(68)
7.1 Introduction
287(6)
7.2 Types of SNF ranges
293(9)
7.2.1 Roll over azimuth - (φ/θ) systems
293(2)
7.2.2 Swing arm - (φ/θ) systems
295(2)
7.2.3 Arch-roll rotated - (φ/θ) systems
297(2)
7.2.4 Articulating arm - (φ/θ) systems
299(1)
7.2.5 Robotic arm SNF systems
300(2)
7.3 A Solution to Maxwell's equations in spherical coordinates
302(10)
7.4 Relating spherical mode coefficients to spherical near-field data
312(7)
7.5 Sampling requirements and spherical mode truncation
319(13)
7.6 Development of the transmission formula
332(5)
7.7 Near-field probe correction
337(8)
7.8 Far-field expressions
345(2)
7.9 Practical acquisition schemes and examples
347(4)
7.10 Summary
351(1)
References
351(4)
8 Near-field range assessment 355(126)
8.1 Introduction
355(1)
8.2 A framework for measurement uncertainty
355(1)
8.3 The effects of unwanted signals on vector measurements
356(9)
8.4 The statistical nature of error signals
365(9)
8.5 Probe/Illuminator related errors
374(12)
8.5.1 Probe relative pattern
374(7)
8.5.2 Probe polarisation purity
381(2)
8.5.3 Probe alignment
383(3)
8.6 Mechanical/Positioner related errors
386(42)
8.6.1 AUT alignment
387(1)
8.6.2 PNF probe (x, y) position error
388(6)
8.6.3 PNF probe z position (planarity) error
394(6)
8.6.4 CNF probe p position error
400(4)
8.6.5 SNF (θ, φ, r) positioning uncertainty
404(18)
8.6.6 SNF axis non-orthogonality
422(1)
8.6.7 SNF axis (θ, φ) non-intersection error
422(6)
8.7 Absolute power level related errors
428(15)
8.7.1 Gain standard uncertainty
428(1)
8.7.2 Normalisation constant
429(2)
8.7.3 Impedance mismatch
431(12)
8.8 Processing related errors
443(5)
8.8.1 Aliasing
443(1)
8.8.2 Measurement area truncation
444(4)
8.9 RF sub-system related errors
448(12)
8.9.1 Receiver amplitude linearity
448(3)
8.9.2 Systematic phase
451(5)
8.9.3 Leakage
456(1)
8.9.4 Receiver dynamic range
457(3)
8.10 Environmental errors
460(8)
8.10.1 Probe structure reflection
460(4)
8.10.2 Chamber reflection
464(4)
8.10.3 Random errors
468(1)
8.11 Combining uncertainties
468(1)
8.12 Inter-range comparisons
469(8)
8.13 Summary
477(1)
References
478(3)
9 Mobile and body-centric antenna measurements 481(42)
9.1 Introduction
481(1)
9.2 Indoor far-field antenna measurements
481(3)
9.3 Spherical near-field measurements
484(7)
9.3.1 Over-the-air measurements
488(3)
9.4 Low-gain antenna and S-Parameter measurement methods
491(3)
9.5 Corruption by cables: the use of optical fibre links
494(3)
9.6 On-body measurements
497(5)
9.7 Efficiency measurement using wheeler cap
502(2)
9.8 UWB antenna measurements
504(12)
9.8.1 Return loss
506(1)
9.8.2 Radiation pattern
506(2)
9.8.3 UWB pseudo-time domain measurements
508(3)
9.8.4 Fidelity analysis
511(1)
9.8.5 True time domain measurements
512(3)
9.8.6 Mean gain
515(1)
9.9 Special facilities
516(2)
9.9.1 Over-the-air multipath environment simulation for MIMO testing
516(1)
9.9.2 Reverberation chamber measurements
516(2)
References
518(5)
10 Advanced antenna measurement topics 523(150)
10.1 Introduction
523(1)
10.2 Common topics
523(54)
10.2.1 Probes and probe selection
523(15)
10.2.2 Channel-balance correction for antenna measurements
538(7)
10.2.3 Aperture diagnostics
545(10)
10.2.4 Amplitude and phase drift correction: tie-scan correction
555(4)
10.2.5 Alignment correction (in PNF, CNF and SNF)
559(9)
10.2.6 Introduction to range reflection suppression
568(9)
10.3 PNF topics
577(34)
10.3.1 Bias leakage error
577(3)
10.3.2 Compensation for probe translation effects in dual polarised planar near-field antenna measurements
580(8)
10.3.3 Introduction to phase-less near-field antenna measurements
588(8)
10.3.4 Planar mathematical absorber reflection suppression
596(15)
10.4 CNF topics
611(21)
10.4.1 Cylindrical mathematical absorber reflection suppression
611(16)
10.4.2 Application of C-MARS to far-field and CATR measurements - FF-MARS
627(5)
10.5 SNF topics
632(21)
10.5.1 Spherical near-field electrical alignment
632(9)
10.5.2 The radial distance to MRS ratio
641(1)
10.5.3 Spherical mathematical absorber reflection suppression
642(9)
10.5.4 Rotary joint wow correction for LP antennas
651(2)
10.6 Power parameter definitions and their measurement
653(16)
10.6.1 Directivity
653(4)
10.6.2 Gain
657(11)
10.6.3 Equivalent isotropically radiated power (EIRP)
668(1)
10.6.4 Saturating flux density (SFD)
669(1)
10.7 Summary
669(1)
10.7.1 Summary of MARS
669(1)
References
670(3)
Appendices 673(72)
A1.1 IEEE standard letter designations for radar-frequency bands
673(1)
A1.2 Standard rectangular waveguide bands and selected properties
674(1)
A1.3 Care and use of microwave coaxial connectors
674(4)
A1.4 Reflection coefficient, return loss, transmission loss as a function of VSWR
678(1)
A1.5 Coordinate systems and antenna measurements
678(20)
A1.5.1 Azimuth over elevation
683(2)
A1.5.2 Elevation over azimuth
685(2)
A1.5.3 Polar spherical
687(2)
A1.5.4 True-view (azimuth and elevation)
689(4)
A1.5.5 Direction cosine
693(1)
A1.5.6 Arcsine-space plotting coordinate system
694(1)
A1.5.7 Transformation between coordinate systems
695(3)
A1.5.8 Coordinate systems and elemental solid angles
698(1)
A1.6 Polarisation basis and antenna measurements
698(35)
A1.6.1 Ludwig I (Cartesian)
700(1)
A1.6.2 Polar spherical
700(5)
A1.6.3 Ludwig II (az/el, el/az)
705(5)
A1.6.4 Ludwig III (co-polar, cross-polar and cross-polar discrimination)
710(6)
A1.6.5 Conversion between polarisation bases
716(5)
A1.6.6 Elliptical polarisation, axial ratio and tilt angle
721(8)
A1.6.7 Linear and circular polarisation bases - complex vector representations
729(4)
A1.6.8 Measures of polarisation discrimination
733(1)
A1.7 Isometric rotation of coordinate systems
733(10)
A1.7.1 Azimuth, elevation and roll angles
738(2)
A1.7.2 Euler angles
740(1)
A1.7.3 Antenna pattern plotting
741(2)
References
743(2)
Index 745
Clive Parini is Professor of Antenna Engineering at Queen Mary University of London. He has published over 400 papers on antenna research topics and is a Fellow of the Royal Academy of Engineering.



Stuart Gregson has special experience with near-field antenna measurements, electromagnetic scattering, computational electromagnetics and installed antenna performance prediction. He is with Nearfield Systems Inc. and has a visiting position at Queen Mary University of London.



John McCormick has extensive experience in antenna, RCS and EW research and development from DERA, BAE SYSTEMS and now SELEX ES Edinburgh where he is lead radar systems engineer.



Daniël Janse van Rensburg has extensive experience working as microwave antenna test engineer in the aerospace industry and is with Nearfield Systems Inc. He regularly teaches industry courses on antenna testing and is an adjunct professor at the University of Ottawa, Canada.