Muutke küpsiste eelistusi
  • Formaat - PDF+DRM
  • Hind: 196,98 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This monograph, now in a thoroughly revised second edition, offers the latest research on random sets. It has been extended to include substantial developments achieved since 2005, some of them motivated by applications of random sets to econometrics and finance.

The present volume builds on the foundations laid by Matheron and others, including the vast advances in stochastic geometry, probability theory, set-valued analysis, and statistical inference. It shows the various interdisciplinary relationships of random set theory within other parts of mathematics, and at the same time fixes terminology and notation that often vary in the literature, establishing it as a natural part of modern probability theory and providing a platform for future development. It is completely self-contained, systematic and exhaustive, with the full proofs that are necessary to gain insight.

Aimed at research level, Theory of Random Sets will be an invaluable reference for probabilists; mathematicians working in convex and integral geometry, set-valued analysis, capacity and potential theory; mathematical statisticians in spatial statistics and uncertainty quantification; specialists in mathematical economics, econometrics, decision theory, and mathematical finance; and electronic and electrical engineers interested in image analysis.

Arvustused

A strong feature of the first edition that is further strengthened in the second one is the Notes concluding each chapter. These remarks and discussions not only provide a comprehensive literature review on the historical origins of the material covered in each section, but also point to a variety of recent research papers, where those concepts are applied. (Christian Hirsch, Mathematical Reviews, August, 2018)

1 Random Closed Sets and Capacity Functionals
1(224)
1.1 Distributions of Random Sets
1(48)
1.1.1 Set-Valued Random Elements
1(5)
1.1.2 Capacity Functionals
6(9)
1.1.3 Choquet's Theorem
15(5)
1.1.4 Proofs of Choquet's Theorem
20(7)
1.1.5 Separating Classes
27(4)
1.1.6 Further Functionals Related to Random Sets
31(7)
1.1.7 Separable Random Sets and Inclusion Functionals
38(6)
1.1.8 Hitting Processes
44(5)
1.2 The Lattice-Theoretic Framework
49(8)
1.2.1 Basic Constructions
49(1)
1.2.2 Existence of Measures on Partially Ordered Sets
50(4)
1.2.3 Locally Finite Measures on Posets
54(2)
1.2.4 Existence of Random Sets Distributions
56(1)
1.3 Measurability and Multifunctions
57(20)
1.3.1 Multifunctions in Metric Spaces
57(5)
1.3.2 Random Compact Sets in Polish Spaces
62(2)
1.3.3 The Effros σ-Algebra
64(3)
1.3.4 Distribution of Random Closed Sets in Polish Spaces
67(2)
1.3.5 Measurability of Set-Theoretic Operations
69(3)
1.3.6 Non-closed Random Sets
72(5)
1.4 Selections of Random Closed Sets
77(13)
1.4.1 Existence and Uniqueness
77(5)
1.4.2 Distributions of Selections
82(6)
1.4.3 Families of Selections
88(2)
1.5 Capacity Functionals and Properties of Random Closed Sets
90(22)
1.5.1 Invariance and Stationarity
90(4)
1.5.2 Regenerative Events
94(3)
1.5.3 The Expected Measure of a Random Set
97(3)
1.5.4 Hausdorff Dimension
100(4)
1.5.5 Comparison of Random Sets
104(4)
1.5.6 Transformation of Capacities
108(2)
1.5.7 Rearrangement Invariance
110(2)
1.6 Calculus with Capacities
112(15)
1.6.1 The Choquet Integral
112(8)
1.6.2 The Radon--Nikodym Theorem for Capacities
120(2)
1.6.3 Derivatives of Capacities
122(5)
1.7 Convergence
127(19)
1.7.1 Weak Convergence
127(9)
1.7.2 Convergence Almost Surely and in Probability
136(4)
1.7.3 Probability Metrics
140(6)
1.8 Random Convex Sets
146(15)
1.8.1 C-Additive Capacities
146(4)
1.8.2 Containment Functional
150(6)
1.8.3 Non-compact Random Convex Sets
156(5)
1.9 Point Processes and Random Measures
161(27)
1.9.1 Random Sets and Point Processes
161(9)
1.9.2 A Representation of Random Sets as Point Processes
170(5)
1.9.3 Random Sets and Random Measures
175(3)
1.9.4 Random Capacities
178(3)
1.9.5 Robbins' Theorem for Random Capacities
181(7)
1.10 Various Interpretations of Capacities
188(37)
1.10.1 Non-additive Measures
188(4)
1.10.2 Upper and Lower Probabilities
192(6)
1.10.3 Belief Functions
198(3)
1.10.4 Capacities in Robust Statistics
201(3)
Notes to Chap. 1
204(21)
2 Expectations of Random Sets
225(92)
2.1 The Selection Expectation and Aumann Integral
225(53)
2.1.1 Integrable Selections and Decomposability
226(12)
2.1.2 The Selection Expectation
238(13)
2.1.3 Applications of the Selection Expectation
251(8)
2.1.4 Variants of the Selection Expectation
259(4)
2.1.5 Convergence of the Selection Expectations
263(7)
2.1.6 Conditional Expectation
270(8)
2.2 Further Definitions of Expectations
278(39)
2.2.1 General Methods of Defining Expectations
278(4)
2.2.2 The Vorob'ev Expectation
282(4)
2.2.3 Distance Average
286(4)
2.2.4 The Radius-Vector Expectation
290(1)
2.2.5 Expectations in Metric Spaces
291(7)
2.2.6 Convex Combination Spaces
298(1)
2.2.7 Sublinear and Superlinear Expectations
299(7)
Notes to Chap. 2
306(11)
3 Minkowski Sums
317(62)
3.1 The Strong Law of Large Numbers for Random Sets
317(27)
3.1.1 Minkowski Sums of Deterministic Sets
317(3)
3.1.2 The Strong Law of Large Numbers for Random Compact Sets
320(6)
3.1.3 Applications of the Strong Law of Large Numbers
326(9)
3.1.4 Non-identically Distributed Summands
335(4)
3.1.5 Non-compact Summands
339(5)
3.2 Limit Theorems
344(17)
3.2.1 The Central Limit Theorem for Minkowski Averages
344(6)
3.2.2 Gaussian Random Sets
350(4)
3.2.3 Minkowski Infinitely Divisible Random Compact Sets
354(3)
3.2.4 Stable Random Compact Sets
357(4)
3.3 Further Results Related to Minkowski Sums
361(18)
3.3.1 Convergence of Series
361(2)
3.3.2 Renewal Theorems
363(4)
3.3.3 Ergodic Theorems
367(2)
3.3.4 Large Deviations
369(4)
Notes to Chap. 3
373(6)
4 Unions of Random Sets
379(72)
4.1 Infinite Divisibility and Stability for Unions
379(30)
4.1.1 Infinite Divisibility for Unions
379(7)
4.1.2 Scheme of Series for Unions of Random Closed Sets
386(2)
4.1.3 Infinite Divisibility of Lattice-Valued Random Elements
388(4)
4.1.4 Union-Stable Random Sets
392(6)
4.1.5 LePage Series Representation and Examples
398(6)
4.1.6 Non-multiplicative Normalisations
404(5)
4.2 Weak Convergence of Scaled Unions
409(15)
4.2.1 Stability of Limits
409(1)
4.2.2 Limit Theorems Under Regular Variation Conditions
410(7)
4.2.3 Necessary Conditions
417(3)
4.2.4 The Probability Metrics Method
420(4)
4.3 Convergence with Probability One
424(10)
4.3.1 Regularly Varying Capacities
424(2)
4.3.2 Almost Sure Convergence of Scaled Unions
426(3)
4.3.3 Unions of Random Compact Sets
429(3)
4.3.4 Functionals of Unions
432(2)
4.4 Convex Hulls and Intersections
434(17)
4.4.1 Infinite Divisibility for Convex Hulls
434(3)
4.4.2 Convex-Stable Sets
437(3)
4.4.3 Intersections
440(4)
Notes to Chap. 4
444(7)
5 Random Sets and Random Functions
451(102)
5.1 Random Multivalued Functions
451(35)
5.1.1 Multivalued Martingales in Discrete Time
451(11)
5.1.2 Continuous Time Set-Valued Processes
462(11)
5.1.3 Special Classes of Set-Valued Processes
473(9)
5.1.4 Random Functions with Stochastic Domains
482(4)
5.2 Level and Excursion Sets of Random Functions
486(17)
5.2.1 Excursions of Random Fields
486(5)
5.2.2 Random Subsets of the Positive Half-Line and Filtrations
491(3)
5.2.3 Level Sets of Strong Markov Processes
494(7)
5.2.4 Set-Valued Stopping Times and Set-Indexed Martingales
501(2)
5.3 Semicontinuous Random Functions
503(50)
5.3.1 Epigraphs and Epi-Convergence
503(4)
5.3.2 Weak Epi-Convergence of Random Functions
507(11)
5.3.3 Stochastic Optimisation
518(5)
5.3.4 Epigraphs and Extremal Processes
523(9)
5.3.5 Increasing Set-Valued Processes of Excursion Sets
532(2)
5.3.6 Strong Law of Large Numbers for Epigraphical Sums
534(3)
5.3.7 Level Sums of Random Upper Semicontinuous Functions
537(3)
Notes to Chap. 5
540(13)
Appendices
553(60)
A Topological Spaces and Metric Spaces
553(7)
B Linear Spaces
560(6)
C Space of Closed Sets
566(5)
D Compact Sets and the Hausdorff Metric
571(8)
E Multifunctions and Semicontinuity
579(4)
F Measures and Probabilities
583(7)
G Capacities
590(5)
H Convex Sets
595(7)
I Semigroups, Cones and Harmonic Analysis
602(4)
J Regular Variation
606(7)
References 613(36)
Name Index 649(10)
Subject Index 659(16)
List of Notation 675
Ilya Molchanov is Professor of Probability Theory at the Department of Mathematical Statistics and Actuarial Science at the University of Bern, Switzerland.