Muutke küpsiste eelistusi

E-raamat: Thermodynamics and Control of Open Quantum Systems

(Weizmann Institute of Science, Israel), (Weizmann Institute of Science, Israel)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 13-Jan-2022
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781316814574
  • Formaat - PDF+DRM
  • Hind: 77,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 13-Jan-2022
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781316814574

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The control of open quantum systems and their associated quantum thermodynamic properties is a topic of growing importance in modern quantum physics and quantum chemistry research. This unique and self-contained book presents a unifying perspective of such open quantum systems, first describing the fundamental theory behind these formidably complex systems, before introducing the models and techniques that are employed to control their quantum thermodynamics processes. A detailed discussion of real quantum devices is also covered, including quantum heat engines and quantum refrigerators. The theory of open quantum systems is developed pedagogically, from first principles, and the book is accessible to graduate students and researchers working in atomic physics, quantum information, condensed matter physics, and quantum chemistry.

The theory of open quantum systems is developed from first principles, and a detailed discussion of real quantum devices is also covered. This unique and self-contained book is accessible to graduate students and researchers working in atomic physics, quantum information, condensed matter physics, and quantum chemistry.

Muu info

The theory of open quantum systems is developed from first principles, and a detailed discussion of quantum devices is covered.
Preface xi
Part I Quantum System-Bath Interactions and Their Control
1 Equilibration of Large Quantum Systems
3(11)
1.1 From Quantum Dynamics to Thermodynamics
3(3)
1.2 The Problem of Equilibration for Physical Observables
6(4)
1.3 From Equilibration to Thermalization
10(2)
1.4 Discussion
12(2)
2 Thermalization of Quantum Systems Weakly Coupled to Baths
14(8)
2.1 Division into System and Bath
14(3)
2.2 System---Bath Separability and Non-separability
17(2)
2.3 Thermal Equilibrium and Correlation Functions
19(1)
2.4 Discussion
20(2)
3 Generic Quantum Baths
22(18)
3.1 Bosonic Bath Models
22(11)
3.2 Polaritons: Photon Interactions with Optical Phonons
33(3)
3.3 Magnon Baths
36(3)
3.4 Discussion
39(1)
4 Quantized System---Bath Interactions
40(15)
4.1 Spin-Boson Models
40(4)
4.2 Polaronic System---Bath Interactions
44(8)
4.3 Two-Level System Coupling to Magnon or Spin Bath
52(2)
4.4 Discussion
54(1)
5 System---Bath Reversible and Irreversible Quantum Dynamics
55(14)
5.1 Wigner---Weisskopf Dynamics
55(2)
5.2 Photon---Atom Binding and Partial Decay
57(8)
5.3 Atomic Coupling to a High-Q Defect Mode in the PBG
65(3)
5.4 Discussion
68(1)
6 System---Bath Equilibration via Spin-Boson Interaction
69(11)
6.1 System---Bath Non-separability or Entanglement near Thermal Equilibrium
69(5)
6.2 Mean Energies at Equilibrium
74(3)
6.3 System Evolution toward Equilibrium
77(2)
6.4 Discussion
79(1)
7 Bath-Induced Collective Dynamics
80(11)
7.1 Collective TLS Coupling to a Single Field Mode
80(3)
7.2 Cooperative Decay of N Driven TLS
83(2)
7.3 Multiatom Cooperative Emission Following Single-Photon Absorption
85(5)
7.4 Discussion
90(1)
8 Bath-Induced Self-Energy: Cooperative Lamb-Shift and Dipole-Dipole Interactions
91(28)
8.1 Markovian Theory of Two-Atom Self-Energy
91(10)
8.2 Non-Markovian Theory of RDDI in Waveguides
101(2)
8.3 Cooperative Self-Energy Effects in High- Q Cavities
103(6)
8.4 Macroscopic Quantum-Superposition (MQS) via Cooperative Lamb Shift
109(8)
8.5 Discussion
117(2)
9 Quantum Measurements, Pointer Basis, and Decoherence
119(15)
9.1 Quantum Measurements and Pointer Bases
119(6)
9.2 Decoherence of Entangled System-Meter States
125(5)
9.3 Qubit Meter of a TLS Coupled to a Bath
130(2)
9.4 Discussion
132(2)
10 The Quantum Zeno and Anti-Zeno Effects (QZE and AZE)
134(27)
10.1 The QZE in a Closed System
134(4)
10.2 Open-System Decay Modified by Measurements
138(6)
10.3 QZE and AZE Scaling
144(4)
10.4 QZE and AZE Scaling in Various Baths
148(10)
10.5 Discussion
158(3)
11 Dynamical Control of Open Systems
161(37)
11.1 Non-Markovian Master Equation for Dynamically Controlled Systems in Thermal Baths
161(9)
11.2 Non-Markovian Master Equation for Periodically Modulated TLS in a Thermal Bath
170(12)
11.3 Finite-Temperature TLS Decoherence Control
182(12)
11.4 Dynamical "Filter Function" Control
194(1)
11.5 Discussion
195(3)
12 Optimal Dynamical Control of Open Systems
198(13)
12.1 Euler-Lagrange Optimization
198(2)
12.2 Bath-Optimized Task-Oriented Control (BOTOC)
200(6)
12.3 Comparison of BOTOC and DD Control
206(4)
12.4 Discussion
210(1)
13 Dynamical Control of Quantum Information Processing
211(31)
13.1 Decoherence Control during Quantum Computation
211(6)
13.2 Multipartite Decoherence Control
217(12)
13.3 Decoherence-Control Scalability
229(6)
13.4 Bell-State Entanglement and Decoherence Control
235(4)
13.5 Discussion
239(3)
14 Dynamical Control of Quantum State Transfer in Hybrid Systems
242(17)
14.1 Optimized Control of Transfer between Multipartite Open-System Subspaces
242(1)
14.2 Optimized State Transfer from Noisy to Quiet Qubits
243(5)
14.3 Optimized Control of State Transfer through Noisy Quantum Channels
248(8)
14.4 Discussion
256(3)
Part II Control of Thermodynamic Processes in Quantum Systems
15 Entropy, Work, and Heat Exchange Bounds for Driven Quantum Systems
259(13)
15.1 Entropy Change in Markovian and Non-Markovian Processes
259(4)
15.2 Passivity and Nonpassivity
263(1)
15.3 Work and Heat Exchange between a Driven System and a Bath
264(2)
15.4 Heat Currents and Entropy Change
266(4)
15.5 Discussion
270(2)
16 Thermodynamics and Its Control on Non-Markovian Timescales
272(34)
16.1 QND Impulsive Disturbances of the Equilibrium State
272(11)
16.2 Non-Markovian TLS Heating or Cooling by Repeated QND Disturbances
283(5)
16.3 Control of Steady States by QND Disturbances
288(12)
16.4 TLS Cooling Control in a Bath
300(3)
16.5 Discussion
303(3)
17 Work-Information Relation and System-Bath Correlations
306(19)
17.1 Information and the Second Law of Thermodynamics
307(2)
17.2 The Landauer Principle
309(3)
17.3 Work Extraction from Passive States by Information Feedforward
312(6)
17.4 The Landauer Principle Revisited for Non-Markovian System-Bath Correlations
318(5)
17.5 Discussion
323(2)
18 Cyclic Quantum Engines Energized by Thermal or Nonthermal Baths
325(18)
18.1 Universal Efficiency Bound
325(3)
18.2 Quantum Machines Powered by Nonthermal Bath with Ergotropy
328(5)
18.3 Quantum Machines Energized by Heat from Nonthermal Baths
333(7)
18.4 Discussion
340(3)
19 Steady-State Cycles for Quantum Heat Machines
343(22)
19.1 Reciprocating Heat Engines in Quantum Settings
344(2)
19.2 Continuous Cycles under Periodic Modulation
346(7)
19.3 Bridging Self-Commuting Continuous and Reciprocal Cycles
353(7)
19.4 Speed Limits from Continuous to Otto Cycles
360(3)
19.5 Discussion
363(2)
20 Two-Level Minimal Model of a Heat Engine
365(16)
20.1 Model and Treatment Principles
365(3)
20.2 Periodic Modulation, Filtered Bath Spectra, and the HE Condition
368(3)
20.3 Minimal QHM Model beyond Markovianity
371(7)
20.4 Discussion
378(3)
21 Quantum Cooperative Heat Machines
381(14)
21.1 Many-Body Heat Engine (HE) with Permutation Symmetry
381(2)
21.2 Cooperative and Noncooperative Master Equations (ME)
383(3)
21.3 Collective Energy Currents
386(1)
21.4 Cooperative Power Enhancement
387(5)
21.5 Discussion
392(3)
22 Heat-to-Work Conversion in Fully Quantized Machines
395(27)
22.1 Principles of Work Extraction in Fully Quantized HE
395(3)
22.2 Two-Level Quantum Amplifier (Laser) as Heat Engine
398(16)
22.3 QHM Catalyzed by Piston Squeezing
414(4)
22.4 Discussion
418(4)
23 Quantum Refrigerators and the Third Law
422(13)
23.1 Quantized Refrigerator (QR) Performance Bounds
422(5)
23.2 Performance of Semiclassical Minimal (Two-Level) Refrigerators
427(3)
23.3 Cooling-Speed Scaling with Temperature
430(3)
23.4 Discussion
433(2)
24 Minimal Quantum Heat Manager: Heat Diode and Transistor
435(14)
24.1 Heat Rectification with BSF
435(7)
24.2 Heat-Transistor Amplification with BSF
442(4)
24.3 Discussion
446(3)
Conclusions and Outlook 449(5)
Bibliography 454(15)
Index 469
Gershon Kurizki has held the G.W. Dunne Professorial Chair in Theoretical Quantum Optics at the Weizmann Institute of Science in Israel since 1998. He was the recipient of the W.E. Lamb Medal in Laser Science and Quantum Optics (USA) in 2008 and the Humboldt-Meitner Award (Germany) in 2009 for pioneering contributions to the theory of quantum measurements and decoherence control in open quantum systems. A Fellow of the Optical Society of America, the American Physical Society and the UK Institute of Physics, he has co-authored more than 300 scientific publications. Abraham G. Kofman is Research Consultant at the Weizmann Institute of Science. He was the recipient of the Maxine Singer Prize for Outstanding Research at the Weizmann Institute of Science in 2005, and received the 'Highlights of 2013' citation from the New Journal of Physics. He has coauthored more than 100 scientific publications related to various fields of theoretical physics and chemistry, including quantum optics, quantum measurements, quantum information processing, atomic and molecular physics, condensed matter and chemical reactions.