Muutke küpsiste eelistusi

E-raamat: Thermoelectricity and Advanced Thermoelectric Materials

Edited by (Assistant Professor, Sri Guru Gobind Singh College, Chandigarh, Indi), Edited by (Professor, Department of Physics, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Professor, Department of Physics, Panjab University, Chandigarh, India)
  • Formaat - EPUB+DRM
  • Hind: 279,82 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Thermoelectricity and Advanced Thermoelectric Materials reviews these emerging materials, including skutterudites, clathrates and half-Heusler alloys. In addition, the book discusses a number of oxides and silicides that have promising thermoelectric properties. As 2D materials with high figures of merit have emerged as promising candidates for thermoelectric applications, this book presents an updated introduction to the field of thermoelectric materials, including recent advances in materials synthesis, device modeling, and design. Finally, the book addresses the theoretical difficulties and methodologies of computing the thermoelectric properties of materials that can be used to understand and predict high efficient thermoelectric materials.
  • Reviews the most relevant, emerging thermoelectric materials, including 2D materials, skutterudites, clathrates and half-heusler alloys
  • Focuses on how electronic structure engineering can lead to improved materials performance for thermoelectric energy conversion applications
  • Includes the latest advances in the synthesis, modeling and design of advanced thermoelectric materials
Contributors ix
1 Introduction and brief history of thermoelectric materials
1(20)
Anuradha Saini
Rajesh Kumar
Ranjan Kumar
1.1 Introduction
1(1)
1.2 Historical background
2(3)
1.3 Thermoelectric phenomenon and effects
5(2)
1.4 Brief history of thermoelectric materials
7(4)
1.5 Efficiency of thermoelectric materials and figure of merit
11(3)
1.6 Current energy scenario and thermoelectricity
14(7)
References
15(6)
2 Theory of energy conversion between heat and electricity
21(34)
Shivprasad S. Shastri
Sudhir K. Pandey
2.1 Introduction
21(1)
2.2 Electronic transport and its relation to electronic structure
22(7)
2.3 Heat transport through phonons and its relation to phonon band structure
29(2)
2.4 Phonon calculation methods
31(6)
2.5 Thermoelectric transport in a nutshell
37(1)
2.6 Computational approaches based on DFT
38(5)
2.7 The theoretical aspects toward prediction of new thermoelectric materials
43(2)
2.8 Theoretical and computational investigations of thermoelectric properties: A short review
45(10)
Acknowledgments
50(1)
References
50(5)
3 Measurement of thermoelectric properties
55(18)
S.K. Tripathi
Sukhdeep Singh
3.1 Measurement principles of electrical conductivity and thermopower
55(1)
3.2 Methods of thermal conductivity measurement in bulk materials
56(7)
3.3 Methods of thermal conductivity measurement in thin films
63(4)
3.4 Methods for electrical conductivity measurement
67(2)
3.5 Methods for thermopower measurement
69(1)
3.6 Test criteria and errors
69(4)
References
70(3)
4 Synthesis of thermoelectric materials
73(32)
Min Hong
Jin Zou
Zhi-Gang Chen
4.1 Introduction
73(1)
4.2 Melting methods
74(10)
4.3 Ball milling
84(1)
4.4 Solution synthesis
84(2)
4.5 Liquid exfoliation of layered thermoelectric materials
86(4)
4.6 High-pressure synthesis techniques
90(1)
4.7 Electrodeposition
90(3)
4.8 Chemical vapor deposition
93(2)
4.9 Summary
95(10)
Acknowledgments
97(1)
References
97(8)
5 Design of thermoelectric materials
105(12)
Manoj K. Yadav
Biplab Sanyal
5.1 Introduction
105(1)
5.2 Efficiency hurdles
106(2)
5.3 Possible routes for high ZT
108(1)
5.4 Computational design
108(5)
5.5 2D thermoelectrics
113(1)
5.6 Future prospects
114(3)
References
115(2)
6 Strategies for improving efficiency of thermoelectric materials
117(22)
Prafulla K. Jha
6.1 Introduction
117(2)
6.2 Strategies for improving thermoelectric efficiency
119(12)
6.3 Conclusive remarks and future outlook
131(8)
References
135(4)
7 Traditional thermoelectric materials and challenges
139(24)
Kulwinder Kaur
Enamullah
Shakeel Ahmad Khanday
Jaspal Singh
Shobhna Dhiman
7.1 Traditional thermoelectric materials
139(4)
7.2 Conductivity and thermoelectric potential depending on carrier density
143(3)
7.3 Challenges to enhance the thermopower and figure of merit
146(3)
7.4 Doping of traditional thermoelectric materials
149(1)
7.5 Effect of doping in traditional thermoelectric materials
150(1)
7.6 Nanostructured traditional thermoelectric materials
151(12)
References
156(7)
8 Beyond 3D-traditional materials thermoelectric materials
163(32)
Manish K. Kashyap
Renu Singla
8.1 Introduction
163(1)
8.2 Oxides-based thermoelectric materials
164(2)
8.3 Zintl phase-based thermoelectric materials
166(3)
8.4 Hybrid thermoelectric materials
169(2)
8.5 Metal chalcogenides-based thermoelectric materials
171(3)
8.6 Skutterudite antimonides-based thermoelectric materials
174(3)
8.7 Half-Heusler compounds
177(4)
8.8 Manganese silicide
181(14)
References
184(11)
9 Organic semiconductors and polymers
195(38)
S.K. Tripathi
Ravneet Kaur
9.1 Organic semiconductors
195(11)
9.2 Conjugated polymers
206(2)
9.3 Thermoelectric plastics
208(2)
9.4 Organic-inorganic hybrid materials
210(2)
9.5 Doping in organic semiconductors
212(1)
9.6 Organic-inorganic superlattice structures
213(3)
9.7 N-Type organic thermoelectric polymers
216(2)
9.8 Effect of molecule structure on TE properties
218(2)
9.9 Carrier density and mobility test
220(5)
9.10 Challenge in organic semiconductor thermoelectric materials
225(8)
References
226(7)
10 Two-dimensional (2D) thermoelectric materials
233(28)
Ajay K. Kushwaha
Hemen Kalita
Siddhartha Suman
Aditya Bhardwaj
Rajesh Ghosh
10.1 Introduction
233(1)
10.2 Effect of dimensional confinement on thermoelectric materials
234(2)
10.3 Thermoelectric properties of two-dimensional (2D) structures
236(4)
10.4 Thermoelectric properties of twotlimensional (2D) materials
240(13)
10.5 Summary and future prospective
253(8)
References
253(8)
11 Nanostructured thermoelectric materials
261(52)
Khalid Bin Masood
Neha Jain
Pushpendra Kumar
Mushtaq Ahmad Malik
Jai Singh
11.1 Low-dimensionality in thermoelectric materials
261(8)
11.2 Nanocomposite thermoelectric materials
269(7)
11.3 Graphene-based nanocomposite thermoelectric materials
276(7)
11.4 Carbon nanotube (CNT)-based nanocomposite thermoelectric materials
283(8)
11.5 Nanocaged thermoelectric materials (Skutterudites and Clathrates)
291(6)
11.6 Nanowire thermoelectric materials
297(2)
11.7 Quasi-one-dimensional (Q1D) organic thermoelectric materials
299(2)
11.8 Conclusion
301(12)
References
301(12)
12 Advances in the applications of thermoelectric materials
313(26)
Ranber Singh
12.1 Introduction
313(1)
12.2 Thermocouple and TE modules
314(2)
12.3 Power and efficiency calculation of a TE device
316(3)
12.4 Advances in the assembly and scalable manufacturing of TE materials
319(2)
12.5 Nanostructuring of TE materials
321(4)
12.6 TE power generators
325(3)
12.7 Peltier cooler
328(2)
12.8 Advantages and disadvantages of TE devices over the conventional mechanical devices
330(9)
References
331(8)
Index 339
Dr. Ranjan Kumar is a Professor in the Department of Physics at King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia - on leave from Panjab University, Chandigarh, India. Dr. Kumars field of specialization is theoretical condensed matter physics, and his research interests include: Fullerenes and carbon materials, Heusler alloys for spintronic applications, dilute magnetic semiconductors, electronic and thermoelectric properties of materials, and superconductors. Dr. Ranber Singh is an Assistant Professor at the Sri Guru Gobind Singh College, Chandigarh, India. Dr. Singhs research interests include the theoretical study of nanostructured materials and other condensed matter systems.